Compare commits

..

10 Commits

Author SHA1 Message Date
9bb162e7d5 orbit: fix planets not orbiting 2022-11-20 17:53:12 -08:00
f86697aad8 skycraft: smoother ship controls 2022-11-10 14:09:52 -08:00
c709b1308e skycraft: moar refactor 2022-11-09 17:39:11 -08:00
925550308f skycraft: refactor & move to TS 2022-11-09 17:28:11 -08:00
7354dcb929 skycraft: sexier spaceship
now with wavefront .obj format support
2022-11-09 00:44:48 -08:00
b6cc6ca35b skycraft: specular lighting 2022-11-08 14:28:08 -08:00
e27151b796 skycraft: optimize mesh generation 2022-11-08 12:04:51 -08:00
b0a39bb1ce skycraft: now with sunlight! 2022-11-08 09:26:36 -08:00
216ef470c5 skycraft: orbit computatino still borken
But we got ourselves a spaceship!
Improved the camera a bit. Now we can see the ship's orbit.
2022-11-08 00:33:51 -08:00
2fccb1fb7c skycraft: now with celestial bodies 2022-10-18 14:45:17 -07:00
13 changed files with 5414 additions and 714 deletions

313
skycraft/chunk.ts Normal file
View File

@ -0,0 +1,313 @@
import { makeFace } from '../geometry';
import * as linalg from './linalg';
import {memoize} from '../memoize';
type direction = ('-x' | '+x' | '-y' | '+y' | '-z' | '+z');
const BlockType = {
UNDEFINED: 0,
AIR: 1,
DIRT: 2,
GRASS: 3,
STONE: 4,
WATER: 5,
TREE: 6,
LEAVES: 7,
SUN: 8,
};
const CHUNKSIZE = 32;
/** seed: some kind of number uniquely defining the body
* x, y, z: space coordinates in the body's frame
*
* returns: a chunk
*/
function makeDirtBlock(seed: number) {
// XXX: for now, return a premade chunk: a 24x24x24 cube of dirt
// surrounded by 4 blocks of air all around
const cs = CHUNKSIZE;
if (seed !== 1337) {
return {};
}
// if (Math.abs
const blocks = new Array(cs * cs * cs);
blocks.fill(BlockType.AIR);
const dirt = new Array(24).fill(BlockType.DIRT);
for (let i = 0; i < 24; i++) {
for (let j = 4; j < 28; j++) {
const offset = cs * cs * (i + 4) + cs * j;
blocks.splice(offset + 4, 24, ...dirt);
}
}
const half = cs / 2;
return {
position: [-half, -half, -half],
blocks,
underground: false,
seed,
};
}
function makeSunChunk(seed: number, i: number, j: number, k: number) {
const cs = CHUNKSIZE;
const radius = 42;
if (Math.abs(cs * i) > radius
|| Math.abs(cs * j) > radius
|| Math.abs(cs * k) > radius) {
return undefined;
}
const half = cs / 2;
const blocks = new Array(cs**3);
blocks.fill(BlockType.SUN);
let underground = true;
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const pos = [
x + i * cs - half,
y + j * cs - half,
z + k * cs - half,
];
const idx = (
z * cs * cs +
y * cs +
x
);
if (pos[0]**2 + pos[1]**2 + pos[2]**2 > radius**2) {
blocks[idx] = BlockType.AIR;
underground = false;
}
}
}
}
return {
position: [i * cs - half, j * cs - half, k * cs - half],
layout: [i, j, k],
blocks,
seed,
underground,
};
}
function _getChunk(seed: number, chunkX: number, chunkY: number, chunkZ: number) {
if (seed === 0) {
return makeSunChunk(seed, chunkX, chunkY, chunkZ);
}
if (chunkX === 0 && chunkY === 0 && chunkZ === 0) {
return makeDirtBlock(seed); // x, y, z unused right now
}
return undefined;
}
const getChunk = memoize(_getChunk);
function faceTexture(type: number, dir: direction) {
switch (type) {
case BlockType.GRASS:
switch (dir) {
case '+y': return [0, 15];
case '-y': return [2, 15];
default: return [1, 15];
}
case BlockType.DIRT: return [2, 15];
case BlockType.STONE: return [3, 15];
case BlockType.WATER: return [4, 15];
case BlockType.TREE:
switch (dir) {
case '+y':
case '-y':
return [5, 15];
default: return [6, 15];
}
case BlockType.LEAVES: return [7, 15];
case BlockType.SUN: return [0, 4];
default: return [0, 0];
}
}
function* makeChunkFaces(chunk) {
const cs = CHUNKSIZE;
function faceCenter(pos: linalg.Vec3, dir: direction) {
switch (dir) {
case '-x': return [pos[0] - 0.5, pos[1], pos[2]];
case '+x': return [pos[0] + 0.5, pos[1], pos[2]];
case '-y': return [pos[0], pos[1] - 0.5, pos[2]];
case '+y': return [pos[0], pos[1] + 0.5, pos[2]];
case '-z': return [pos[0], pos[1], pos[2] - 0.5];
case '+z': return [pos[0], pos[1], pos[2] + 0.5];
}
}
function neighborChunk(dir: direction) {
const [chunkX, chunkY, chunkZ] = chunk.layout;
if (chunk.neighbors === undefined) {
chunk.neighbors = {};
}
if (!(dir in chunk.neighbors)) {
switch (dir) {
case '-x':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX - 1, chunkY, chunkZ);
break;
case '+x':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX + 1, chunkY, chunkZ);
break;
case '-y':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY - 1, chunkZ);
break;
case '+y':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY + 1, chunkZ);
break;
case '-z':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ - 1);
break;
case '+z':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ + 1);
break;
}
}
return chunk.neighbors[dir];
}
const neighborIndices = {
'-x': (x, y, z) => z * cs * cs + y * cs + (cs - 1),
'+x': (x, y, z) => z * cs * cs + y * cs + 0,
'-y': (x, y, z) => z * cs * cs + (cs - 1) * cs + x,
'+y': (x, y, z) => z * cs * cs + 0 * cs + x,
'-z': (x, y, z) => (cs - 1) * cs * cs + y * cs + x,
'+z': (x, y, z) => 0 * cs * cs + y * cs + x,
};
function neighborBlock(dir: direction, x, y, z) {
const neighbor = neighborChunk(dir);
let block;
if (neighbor === undefined) {
block = BlockType.AIR;
} else {
block = neighbor.blocks[neighborIndices[dir](x, y, z)];
}
return { dir, block };
}
function* neighbors(x, y, z) {
const idx = (
z * cs * cs +
y * cs +
x
);
if (x > 0) {
yield {
block: chunk.blocks[idx - 1],
dir: '-x',
};
} else {
yield neighborBlock('-x', x, y, z);
}
if (x < cs - 1) {
yield {
block: chunk.blocks[idx + 1],
dir: '+x',
};
} else {
yield neighborBlock('+x', x, y, z);
}
if (y > 0) {
yield {
block: chunk.blocks[idx - cs],
dir: '-y',
};
} else {
yield neighborBlock('-y', x, y, z);
}
if (y < cs - 1) {
yield {
block: chunk.blocks[idx + cs],
dir: '+y',
};
} else {
yield neighborBlock('+y', x, y, z);
}
if (z > 0) {
yield {
block: chunk.blocks[idx - cs * cs],
dir: '-z',
};
} else {
yield neighborBlock('-z', x, y, z);
}
if (z < cs - 1) {
yield {
block: chunk.blocks[idx + cs * cs],
dir: '+z',
};
} else {
yield neighborBlock('+z', x, y, z);
}
}
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const idx = (
z * cs * cs +
y * cs +
x
);
const chpos = chunk.position;
const bkpos = [
chpos[0] + x,
chpos[1] + y,
chpos[2] + z,
];
const bt = chunk.blocks[idx];
if (bt === BlockType.AIR) {
continue;
}
for (const { block, dir } of neighbors(x, y, z)) {
if (block !== BlockType.AIR) {
continue;
}
yield makeFace(dir, faceTexture(bt, dir), faceCenter(bkpos, dir));
}
}
}
}
}
function getBodyChunks(seed: number) {
const chunks = [];
const toCheck = [[0, 0, 0]];
while (toCheck.length > 0) {
const [chunkX, chunkY, chunkZ] = toCheck.pop();
const thisChunk = getChunk(seed, chunkX, chunkY, chunkZ);
if (thisChunk === undefined || chunks.includes(thisChunk)) {
continue;
}
chunks.push(thisChunk);
toCheck.push([chunkX - 1, chunkY, chunkZ]);
toCheck.push([chunkX + 1, chunkY, chunkZ]);
toCheck.push([chunkX, chunkY - 1, chunkZ]);
toCheck.push([chunkX, chunkY + 1, chunkZ]);
toCheck.push([chunkX, chunkY, chunkZ - 1]);
toCheck.push([chunkX, chunkY, chunkZ + 1]);
}
return chunks;
}
export function getBodyGeometry(seed: number) {
const faces = getBodyChunks(seed)
.filter(chunk => !chunk.underground)
.map(chunk => [...makeChunkFaces(chunk)]);
return faces.reduce((a, b) => a.concat(b));
}

335
skycraft/draw.ts Normal file
View File

@ -0,0 +1,335 @@
import {makeBufferFromFaces } from '../geometry';
import { loadTexture, makeProgram } from '../gl';
import * as linalg from './linalg';
import * as se3 from '../se3';
import { makeOrbitObject } from './orbit';
const VSHADER = `
attribute vec3 aPosition;
attribute vec3 aNormal;
attribute vec2 aTextureCoord;
uniform mat4 uProjection;
uniform mat4 uModel;
uniform mat4 uView;
uniform vec3 uLightDirection;
uniform float uAmbiantLight;
uniform vec3 uGlowColor;
varying highp vec2 vTextureCoord;
varying lowp vec3 vLighting;
varying lowp vec3 vRay;
varying lowp vec3 vLightDir;
varying lowp vec3 vNormal;
highp mat3 transpose(in highp mat3 inmat) {
highp vec3 x = inmat[0];
highp vec3 y = inmat[1];
highp vec3 z = inmat[2];
return mat3(
vec3(x.x, y.x, z.x),
vec3(x.y, y.y, z.y),
vec3(x.z, y.z, z.z)
);
}
void main() {
highp mat4 modelview = uView * uModel;
gl_Position = uProjection * modelview * vec4(aPosition, 1.0);
lowp vec3 normal = mat3(uModel) * aNormal;
lowp float diffuseAmount = max(dot(-uLightDirection, normal), 0.0);
lowp vec3 ambiant = uAmbiantLight * vec3(1.0, 1.0, 0.9);
vLighting = ambiant + vec3(1.0, 1.0, 1.0) * diffuseAmount + uGlowColor;
vTextureCoord = aTextureCoord;
lowp vec3 camPos = -transpose(mat3(uView))*(uView * vec4(0.0, 0.0, 0.0, 1.0)).xyz;
vRay = -normalize((uModel * vec4(aPosition, 1.0)).xyz - camPos);
vLightDir = -uLightDirection;
vNormal = normal;
}
`;
const FSHADER = `
uniform sampler2D uSampler;
varying highp vec2 vTextureCoord;
varying lowp vec3 vLighting;
varying lowp vec3 vRay;
varying lowp vec3 vLightDir;
varying lowp vec3 vNormal;
void main() {
highp vec4 color = texture2D(uSampler, vTextureCoord);
if (color.a < 0.1) {
discard;
}
lowp vec3 specularDir = 2.0 * dot(vLightDir, vNormal) * vNormal - vLightDir;
lowp float specularAmount = smoothstep(0.92, 1.0, dot(vRay, specularDir));
lowp vec3 specular = 0.8 * specularAmount * vec3(1.0, 1.0, 0.8);
gl_FragColor = vec4(vLighting * color.rgb + specular, color.a);
}
`;
export async function initWorldGl(gl: WebGLRenderingContext) {
const program = makeProgram(gl, VSHADER, FSHADER);
const texture = await loadTexture(gl, 'texture.png');
// load those ahead of time
const viewLoc = gl.getUniformLocation(program, 'uView');
const modelLoc = gl.getUniformLocation(program, 'uModel');
const projLoc = gl.getUniformLocation(program, 'uProjection');
const samplerLoc = gl.getUniformLocation(program, 'uSampler');
const lightDirectionLoc = gl.getUniformLocation(program, 'uLightDirection');
const ambiantLoc = gl.getUniformLocation(program, 'uAmbiantLight');
const glowColorLoc = gl.getUniformLocation(program, 'uGlowColor');
const positionLoc = gl.getAttribLocation(program, 'aPosition');
const normalLoc = gl.getAttribLocation(program, 'aNormal');
const textureLoc = gl.getAttribLocation(program, 'aTextureCoord');
const setupScene = (sceneParams) => {
const {
projectionMatrix,
viewMatrix,
ambiantLightAmount,
} = sceneParams;
gl.useProgram(program);
gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix));
gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix));
gl.uniform1f(ambiantLoc, ambiantLightAmount);
// doing this here because it's the same for all world stuff
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity()));
gl.uniform1i(samplerLoc, 0);
gl.enableVertexAttribArray(positionLoc);
gl.enableVertexAttribArray(normalLoc);
gl.enableVertexAttribArray(textureLoc);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
};
const drawObject = (objectParams) => {
const {
position,
orientation,
glBuffer,
numVertices,
lightDirection,
glowColor,
} = objectParams;
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.product(
se3.translation(...position), orientation)));
gl.uniform3fv(lightDirectionLoc, lightDirection);
gl.uniform3fv(glowColorLoc, glowColor);
gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer);
gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0);
gl.vertexAttribPointer(normalLoc, 3, gl.BYTE, true, 20, 12);
gl.vertexAttribPointer(textureLoc, 2, gl.UNSIGNED_SHORT, true, 20, 16);
gl.drawArrays(gl.TRIANGLES, 0, numVertices);
};
return {
setupScene,
drawObject,
};
}
const ORBIT_VSHADER = `
attribute vec3 aPosition;
attribute vec2 aValue;
uniform mat4 uProjection;
uniform mat4 uModel;
uniform mat4 uView;
varying lowp vec2 vCoords;
void main() {
highp mat4 modelview = uView * uModel;
gl_Position = uProjection * modelview * vec4(aPosition, 1.0);
vCoords = aValue;
}
`;
const ORBIT_FSHADER = `
varying lowp vec2 vCoords;
void main() {
lowp float x = vCoords.x;
lowp float y = vCoords.y;
lowp float f = sqrt(x * x + y * y);
if (f > 1.00) {
discard;
} else if (f < 0.98) {
discard;
}
gl_FragColor = vec4(1, .5, 0, 0.5);
}
`;
export function getOrbitDrawContext(gl: WebGLRenderingContext) {
const program = makeProgram(gl, ORBIT_VSHADER, ORBIT_FSHADER);
// load those ahead of time
const viewLoc = gl.getUniformLocation(program, 'uView');
const modelLoc = gl.getUniformLocation(program, 'uModel');
const projLoc = gl.getUniformLocation(program, 'uProjection');
const positionLoc = gl.getAttribLocation(program, 'aPosition');
const valueLoc = gl.getAttribLocation(program, 'aValue');
const setupScene = (sceneParams) => {
const {
projectionMatrix,
viewMatrix,
} = sceneParams;
gl.useProgram(program);
gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix));
gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix));
// doing this here because it's the same for all world stuff
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity()));
gl.enableVertexAttribArray(positionLoc);
gl.enableVertexAttribArray(valueLoc);
};
const drawObject = (objectParams) => {
const {
position,
orientation,
value,
glBuffer,
} = objectParams;
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.product(
se3.translation(...position), orientation)));
gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer);
gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0);
gl.vertexAttribPointer(valueLoc, 2, gl.FLOAT, false, 20, 12);
gl.disable(gl.CULL_FACE);
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
gl.enable(gl.CULL_FACE);
};
return {
setupScene,
drawObject,
};
}
function getObjects(context, body, parentPosition = undefined) {
const objects = [];
const {gl, glContext, player} = context;
const {position, orientation, glowColor} = body;
if (body.glBuffer === undefined) {
body.glBuffer = makeBufferFromFaces(gl, body.geometry);
}
objects.push({
geometry: body.glBuffer,
orientation,
position,
glContext,
glowColor,
});
if (parentPosition !== undefined) {
const orbitObject = makeOrbitObject(gl, context.orbitGlContext, body.orbit, parentPosition);
objects.push(orbitObject);
} else {
const shipOrientation = [
se3.rotationOnly(player.tf),
//se3.rotationOnly(context.camera.tf),
se3.rotxyz(-Math.PI / 2, Math.PI / 2, Math.PI / 2),
].reduce(se3.product);
const shipPos = player.position;
objects.push({
geometry: makeBufferFromFaces(gl, context.spaceship),
orientation: shipOrientation,
position: shipPos,
glContext,
});
}
if (body.children !== undefined) {
for (const child of body.children) {
objects.push(...getObjects(context, child, position));
}
}
return objects;
}
function sunDirection(position: linalg.Vec3) {
return linalg.scale(position, 1/linalg.norm(position));
}
export function draw(context) {
const {gl, camera, player, universe, orbit, orbitGlContext, orbitBody} = context;
const {skyColor, ambiantLight, projMatrix} = context;
const objects = getObjects(context, universe);
if (orbit !== undefined && orbit.excentricity < 1) {
objects.push(makeOrbitObject(gl, orbitGlContext, orbit, orbitBody.position));
}
gl.clearColor(...skyColor, 1.0);
gl.clearDepth(1.0);
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);
gl.enable(gl.CULL_FACE);
gl.cullFace(gl.BACK);
gl.enable(gl.BLEND);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const viewMatrix = se3.inverse([
player.tf, // player position & orientation
camera.tf, // camera orientation relative to player
se3.translation(0, 1, 4), // step back from the player
].reduce(se3.product));
let lastGlContext;
for (const {position, orientation, geometry, glContext, glowColor} of objects) {
if (glContext !== lastGlContext) {
glContext.setupScene({
projectionMatrix: projMatrix,
viewMatrix,
ambiantLightAmount: ambiantLight,
});
}
lastGlContext = glContext;
const lightDirection = sunDirection(position);
glContext.drawObject({
position,
orientation,
glBuffer: geometry.glBuffer,
numVertices: geometry.numVertices,
lightDirection,
glowColor: glowColor || [0, 0, 0],
});
}
}

View File

@ -1,710 +0,0 @@
//import { initUiListeners, setupParamPanel, tick } from './game';
//import { initWorldGl, makeWorld } from './world';
import * as se3 from '../se3';
import {loadTexture, makeProgram} from '../gl';
import {makeFace, makeBufferFromFaces} from '../geometry';
const VSHADER = `
attribute vec3 aPosition;
attribute vec3 aNormal;
attribute vec2 aTextureCoord;
uniform mat4 uProjection;
uniform mat4 uModel;
uniform mat4 uView;
uniform vec3 uLightDirection;
uniform float uAmbiantLight;
varying highp vec2 vTextureCoord;
varying lowp vec3 vLighting;
varying lowp float vDistance;
void main() {
highp mat4 modelview = uView * uModel;
gl_Position = uProjection * modelview * vec4(aPosition, 1.0);
lowp vec3 normal = mat3(uModel) * aNormal;
lowp float diffuseAmount = max(dot(-uLightDirection, normal), 0.0);
lowp vec3 ambiant = uAmbiantLight * vec3(1.0, 1.0, 0.9);
vLighting = ambiant + vec3(1.0, 1.0, 1.0) * diffuseAmount;
vTextureCoord = aTextureCoord;
vDistance = length(modelview * vec4(aPosition, 1.0));
}
`;
const FSHADER = `
uniform sampler2D uSampler;
uniform lowp vec3 uFogColor;
varying highp vec2 vTextureCoord;
varying lowp vec3 vLighting;
varying lowp float vDistance;
void main() {
highp vec4 color = texture2D(uSampler, vTextureCoord);
if (color.a < 0.1) {
discard;
}
lowp float fogamount = 0.0; //smoothstep(80.0, 100.0, vDistance);
gl_FragColor = mix(vec4(vLighting * color.rgb, color.a), vec4(uFogColor, 1.0), fogamount);
}
`;
const kEpoch = 0;
async function initWorldGl(gl) {
const program = makeProgram(gl, VSHADER, FSHADER);
const texture = await loadTexture(gl, 'texture.png');
// load those ahead of time
const viewLoc = gl.getUniformLocation(program, 'uView');
const modelLoc = gl.getUniformLocation(program, 'uModel');
const projLoc = gl.getUniformLocation(program, 'uProjection');
const samplerLoc = gl.getUniformLocation(program, 'uSampler');
const fogColorLoc = gl.getUniformLocation(program, 'uFogColor');
const lightDirectionLoc = gl.getUniformLocation(program, 'uLightDirection');
const ambiantLoc = gl.getUniformLocation(program, 'uAmbiantLight');
const positionLoc = gl.getAttribLocation(program, 'aPosition');
const normalLoc = gl.getAttribLocation(program, 'aNormal');
const textureLoc = gl.getAttribLocation(program, 'aTextureCoord');
const setupScene = (sceneParams) => {
const {
projectionMatrix,
viewMatrix,
fogColor,
lightDirection,
ambiantLightAmount,
} = sceneParams;
gl.useProgram(program);
gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix));
gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix));
gl.uniform3fv(fogColorLoc, fogColor);
gl.uniform3fv(lightDirectionLoc, lightDirection);
gl.uniform1f(ambiantLoc, ambiantLightAmount);
// doing this here because it's the same for all world stuff
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity()));
gl.uniform1i(samplerLoc, 0);
gl.enableVertexAttribArray(positionLoc);
gl.enableVertexAttribArray(normalLoc);
gl.enableVertexAttribArray(textureLoc);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
};
const drawObject = (objectParams) => {
const {
position,
orientation,
glBuffer,
numVertices,
} = objectParams;
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.product(
se3.translation(...position), orientation)));
gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer);
gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0);
gl.vertexAttribPointer(normalLoc, 3, gl.BYTE, true, 20, 12);
gl.vertexAttribPointer(textureLoc, 2, gl.UNSIGNED_SHORT, true, 20, 16);
gl.drawArrays(gl.TRIANGLES, 0, numVertices);
};
return {
setupScene,
drawObject,
};
}
const ORBIT_VSHADER = `
attribute vec3 aPosition;
attribute vec2 aValue;
uniform mat4 uProjection;
uniform mat4 uModel;
uniform mat4 uView;
varying lowp vec2 vCoords;
void main() {
highp mat4 modelview = uView * uModel;
gl_Position = uProjection * modelview * vec4(aPosition, 1.0);
vCoords = aValue;
}
`;
const ORBIT_FSHADER = `
varying lowp vec2 vCoords;
void main() {
lowp float x = vCoords.x;
lowp float y = vCoords.y;
lowp float f = sqrt(x * x + y * y);
if (f > 1.00) {
discard;
} else if (f < 0.98) {
discard;
}
gl_FragColor = vec4(1, .5, 0, 0.5);
}
`;
function getOrbitDrawContext(gl) {
const program = makeProgram(gl, ORBIT_VSHADER, ORBIT_FSHADER);
// load those ahead of time
const viewLoc = gl.getUniformLocation(program, 'uView');
const modelLoc = gl.getUniformLocation(program, 'uModel');
const projLoc = gl.getUniformLocation(program, 'uProjection');
const positionLoc = gl.getAttribLocation(program, 'aPosition');
const valueLoc = gl.getAttribLocation(program, 'aValue');
const setupScene = (sceneParams) => {
const {
projectionMatrix,
viewMatrix,
} = sceneParams;
gl.useProgram(program);
gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix));
gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix));
// doing this here because it's the same for all world stuff
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity()));
gl.enableVertexAttribArray(positionLoc);
gl.enableVertexAttribArray(valueLoc);
};
const drawObject = (objectParams) => {
const {
position,
orientation,
value,
glBuffer,
} = objectParams;
gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.product(
se3.translation(...position), orientation)));
gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer);
gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0);
gl.vertexAttribPointer(valueLoc, 2, gl.FLOAT, false, 20, 12);
gl.disable(gl.CULL_FACE);
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
gl.enable(gl.CULL_FACE);
};
return {
setupScene,
drawObject,
};
}
function initUiListeners(canvas, context) {
const canvasClickHandler = () => {
canvas.requestPointerLock();
canvas.onclick = null;
// const clickListener = e => {
// switch(e.button) {
// case 0: // left click
// destroySelectedBlock(context);
// break;
// case 2: // right click
// makeDirBlock(context);
// break;
// }
// };
const clickListener = e => {};
const keyListener = e => {
if (e.type === 'keydown') {
if (e.repeat) return;
context.keys.add(e.code);
switch (e.code) {
case 'KeyF':
// context.flying = !context.flying;
return false;
case 'Space':
if (!context.flying) {
if (context.jumpAmount > 0) {
const amount = context.jumpForce;
context.camera.velocity[1] = amount;
context.jumpAmount -= 1;
}
}
return false;
}
} else {
context.keys.delete(e.code);
}
};
const moveListener = e => {
context.camera.orientation[1] -= e.movementX / 500;
context.camera.orientation[0] -= e.movementY / 500;
context.camera.orientation[0] = Math.min(Math.max(
context.camera.orientation[0], -Math.PI / 2
), Math.PI / 2);
};
const changeListener = () => {
if (document.pointerLockElement === canvas) {
return;
}
document.removeEventListener('pointerdown', clickListener);
document.removeEventListener('pointerlockchange', changeListener);
document.removeEventListener('pointermove', moveListener);
document.removeEventListener('keydown', keyListener);
document.removeEventListener('keyup', keyListener);
canvas.onclick = canvasClickHandler;
};
document.addEventListener('pointerdown', clickListener);
document.addEventListener('pointerlockchange', changeListener);
document.addEventListener('pointermove', moveListener);
document.addEventListener('keydown', keyListener);
document.addEventListener('keyup', keyListener);
};
canvas.onclick = canvasClickHandler;
document.addEventListener('keydown', e => {
if (e.repeat) return;
switch (e.code) {
case 'F11':
canvas.requestFullscreen();
break;
}
});
}
function handleInput(context) {
const move = (forward, right) => {
const dir = [right, 0, -forward, 1.0];
const ori = se3.roty(context.camera.orientation[1]);
const tf = se3.apply(ori, dir);
const maxSpeed = 8;
const airMovement = 0.08;
if (context.flying) {
context.camera.position[0] += tf[0] / 60;
context.camera.position[2] += tf[2] / 60;
}
if (context.isOnGround) {
context.camera.velocity[0] = tf[0];
context.camera.velocity[2] = tf[2];
} else {
const vel = context.camera.velocity;
vel[0] += tf[0] * airMovement;
vel[2] += tf[2] * airMovement;
const curVel = Math.sqrt(vel[0] * vel[0] + vel[2] * vel[2]);
if (curVel > maxSpeed) {
vel[0] *= maxSpeed / curVel;
vel[2] *= maxSpeed / curVel;
}
}
};
context.keys.forEach(key => {
switch (key) {
case 'KeyW':
move(8, 0.0);
return;
case 'KeyA':
move(0.0, -8);
return;
case 'KeyS':
move(-8, 0.0);
return;
case 'KeyD':
move(0.0, 8);
return;
case 'Space':
if (context.flying) {
context.camera.position[1] += 8 / 60;
}
return;
case 'ShiftLeft':
context.camera.position[1] -= 8 / 60;
return;
}
});
}
function updatePhysics(time, context) {
}
function updateGeometry(context, timeout_ms = 10) {
}
function normalizeAngle(theta) {
const twopi = 2 * Math.PI;
return theta - twopi * Math.floor((theta + twopi) / twopi);
}
/** Let's be honest I should clean this up.
*
* This is the part that solves Kepler's equation using Newton's method.
* For circular-ish orbits, one or two iterations are usually enough.
* More excentric orbits can take more (6 or 7?).
*
* For near-parabolic orbits (and some others?) it often fails to converge...
*/
function getCartesianState(orbit, mu, time) {
const {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
} = orbit;
let n = Math.sqrt(mu/(a**3));
if (a < 0) {
n = Math.sqrt(mu/-(a**3)); // mean motion
}
const M = n * (time - t0); // mean anomaly
// Newton's method
var E2 = 0;
var E = orbit.lastE || M;
let iterations = 0;
// a clever guess? https://link.springer.com/article/10.1023/A:1008200607490
// doesn't work at all.
while (Math.abs(E - E2) > 1e-10) {
if (e < 0.001) {
break;
}
E = E2;
if (e < 1) {
E2 = E - (E - e * Math.sin(E) - M) / (1 - e * Math.cos(E));
} else if (e > 1) {
E2 = E - (-E + e * Math.sinh(E) - M) / (e * Math.cosh(E) - 1);
} else {
E2 = E - (E + E*E*E/3 - M) / (1 + E*E);
}
iterations++;
if (iterations > 100) {
console.log('numerical instability');
return {};
}
}
orbit.lastE = E;
let nu;
if (e > 1) {
nu = 2 * Math.atan(Math.sqrt((e+1) / (e-1)) * Math.tanh(E/2));
} else {
nu = 2 * Math.atan(Math.sqrt((1+e) / (1-e)) * Math.tan(E/2));
}
const p = a * (1 - e**2);
const r = p / (1 + e * Math.cos(nu));// * ((a < 0) ? -1 : 1);
const rd = e * Math.sqrt(mu / p) * Math.sin(nu);
if (orbit.tf === undefined) {
orbit.tf = [se3.rotz(Om), se3.rotx(i), se3.rotz(w)].reduce(se3.product);
}
const tf = se3.product(orbit.tf, se3.rotz(nu));
const pos = se3.apply(tf, [r, 0, 0, 1]);
const vel = se3.apply(tf, [rd, Math.sqrt(p * mu) / r, 0, 1]);
return {
position: pos.slice(0, 3),
velocity: vel.slice(0, 3),
};
}
function getOrientation(body, time) {
return se3.rotxyz(
body.spin[0] * time,
body.spin[1] * time,
body.spin[2] * time,
);
}
function makeOrbitObject(context, orbit, parentPosition) {
const {gl} = context;
const position = parentPosition;
const glContext = context.orbitGlContext;
const orientation = [
se3.rotz(orbit.ascendingNodeLongitude),
se3.roty(-orbit.inclination),
se3.rotz(orbit.periapsisArgument),
].reduce(se3.product);
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
const a = orbit.semimajorAxis;
const b = a * Math.sqrt(1 - orbit.excentricity**2);
const x = - orbit.semimajorAxis * orbit.excentricity;
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
x-a, -b, 0, -1, -1,
x-a, +b, 0, -1, +1,
x+a, -b, 0, +1, -1,
x+a, +b, 0, +1, +1,
]), gl.STATIC_DRAW);
const geometry = {
glBuffer: buffer,
numVertices: 4,
delete: () => gl.deleteBuffer(buffer),
};
return {
geometry,
orientation,
position,
glContext,
};
}
function getObjects(context, body, time, parentBody, parentPosition) {
const kGravitationalConstant = 6.674e-11;
const objects = [];
const {gl, glContext} = context;
let position = [0, 0, 0];
if (parentBody !== undefined) {
// const mu = kGravitationalConstant * parentBody.mass;
const mu = 10;
const coord = getCartesianPosition(body.orbit, mu, time);
position = [
parentPosition[0] + coord[0],
parentPosition[1] + coord[1],
parentPosition[2] + coord[2],
];
objects.push(makeOrbitObject(context, body.orbit, parentPosition));
}
objects.push({
geometry: makeBufferFromFaces(gl, body.geometry),
orientation: getOrientation(body, time),
position,
glContext,
});
if (body.children !== undefined) {
for (const child of body.children) {
objects.push(...getObjects(context, child, time, body, position));
}
}
return objects;
}
function draw(context, time) {
const {gl, camera, universe} = context;
const objects = getObjects(context, universe, time * 0.001);
gl.clearColor(...context.skyColor, 1.0);
gl.clearDepth(1.0);
gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL);
gl.enable(gl.CULL_FACE);
gl.cullFace(gl.BACK);
gl.enable(gl.BLEND);
gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const camrot = camera.orientation;
const campos = camera.position;
const viewMatrix = se3.product(
se3.rotxyz(-camrot[0], -camrot[1], -camrot[2]),
se3.translation(-campos[0], -campos[1], -campos[2])
);
let lastGlContext;
for (const {position, orientation, geometry, glContext} of objects) {
if (glContext !== lastGlContext) {
glContext.setupScene({
projectionMatrix: context.projMatrix,
viewMatrix,
fogColor: context.skyColor,
lightDirection: context.lightDirection,
ambiantLightAmount: context.ambiantLight,
});
}
lastGlContext = glContext;
glContext.drawObject({
position,
orientation,
glBuffer: geometry.glBuffer,
numVertices: geometry.numVertices,
});
}
}
function tick(time, context) {
handleInput(context);
updatePhysics(time, context);
const campos = context.camera.position;
// world generation / geometry update
{
// frame time is typically 16.7ms, so this may lag a bit
let timeLeft = 10;
const start = performance.now();
updateGeometry(context, timeLeft);
}
draw(context, time);
const dt = (time - context.lastFrameTime) * 0.001;
context.lastFrameTime = time;
document.querySelector('#fps').textContent = `${1.0 / dt} fps`;
requestAnimationFrame(time => tick(time, context));
}
function makeCube(texture) {
return [
makeFace('-x', texture, [-0.5, 0, 0]),
makeFace('+x', texture, [+0.5, 0, 0]),
makeFace('-y', texture, [0, -0.5, 0]),
makeFace('+y', texture, [0, +0.5, 0]),
makeFace('-z', texture, [0, 0, -0.5]),
makeFace('+z', texture, [0, 0, +0.5]),
];
}
function makeObjects(gl) {
const texture = [0, 4];
const faces = [
makeFace('-x', texture, [-0.5, 0, 0]),
makeFace('+x', texture, [+0.5, 0, 0]),
makeFace('-y', texture, [0, -0.5, 0]),
makeFace('+y', texture, [0, +0.5, 0]),
makeFace('-z', texture, [0, 0, -0.5]),
makeFace('+z', texture, [0, 0, +0.5]),
];
return [
{
geometry: makeBufferFromFaces(gl, faces),
orientation: [0, 0, 0],
position: [0, 0, 0],
},
];
}
function makeSolarSystem(gl) {
return {
mass: 1.0,
spin: [0, 1.0, 0],
geometry: makeCube([0, 4]),
children: [
{
mass: 0.1,
spin: [0.2, 0.0, 0.0],
geometry: makeCube([0, 8]),
orbit: {
excentricity: 0,
semimajorAxis: 3,
inclination: 0,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
trueAnomaly: 0,
},
},
{
mass: 0.1,
spin: [0.2, 0.0, 0.0],
geometry: makeCube([0, 1]),
orbit: {
excentricity: 0.8,
semimajorAxis: 5,
inclination: 0,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
trueAnomaly: 0,
},
},
{
mass: 0.1,
spin: [0.0, 0.0, 1.0],
geometry: makeCube([9, 9]),
orbit: {
excentricity: 0.3,
semimajorAxis: 5,
inclination: 1.0,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
trueAnomaly: 0,
},
},
],
}
}
async function main() {
const canvas = document.querySelector('#game');
// adjust canvas aspect ratio to that of the screen
canvas.height = screen.height / screen.width * canvas.width;
const gl = canvas.getContext('webgl');
if (gl === null) {
console.error('webgl not available')
return;
}
const context = {
gl,
projMatrix: se3.perspective(Math.PI / 3, canvas.clientWidth / canvas.clientHeight, 0.1, 100.0),
camera: {
position: [0.0, 0.0, 2.0],
orientation: [0.0, 0.0, 0.0],
velocity: [0, 0, 0],
},
keys: new Set(),
lightDirection: [-0.2, -0.5, 0.4],
skyColor: [0.10, 0.15, 0.2],
ambiantLight: 0.7,
blockSelectDistance: 8,
flying: true,
isOnGround: false,
gravity: -17,
jumpForce: 6.5,
// objects: makeObjects(gl),
universe: makeSolarSystem(gl),
};
context.glContext = await initWorldGl(gl);
context.orbitGlContext = getOrbitDrawContext(gl);
initUiListeners(canvas, context);
// setupParamPanel(context);
requestAnimationFrame(time => tick(time, context));
}
window.onload = main;

409
skycraft/index.ts Normal file
View File

@ -0,0 +1,409 @@
import { makeFace } from '../geometry';
import * as linalg from './linalg';
import { loadObjModel } from './obj';
import * as se3 from '../se3';
import { computeOrbit, findSoi, getCartesianState, updateBodyPhysics } from './orbit';
import { getBodyGeometry } from './chunk';
import { draw, getOrbitDrawContext, initWorldGl } from './draw';
import * as quat from './quat';
const kEpoch = 0;
function closeToPlanet(context) {
const body = findSoi(context.universe, context.player.position);
const relativePos = linalg.diff(context.player.position, body.position);
return linalg.norm(relativePos) < 20;
}
function getSolarSystem(seed: number) {
/// XXX: only returns 1 body for now
return {
name: 'Tat',
mass: 1000.0,
spin: [0, 0, 0.2],
geometry: getBodyGeometry(0),
glowColor: [0.5, 0.5, 0.46],
children: [
{
name: 'Quicksilver',
seed: 1336,
mass: 0.1,
spin: [0.0, 0.0, 0.05],
geometry: makeCube([0, 4]),
orbit: {
excentricity: 0.0,
semimajorAxis: 200,
inclination: 0.8,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
t0: 0,
},
},
{
name: 'Satourne',
seed: 1338,
mass: 0.1,
spin: [0.0, 0.5, 0.0],
geometry: makeCube([0, 5]),
orbit: {
excentricity: 0.0,
semimajorAxis: 900,
inclination: 0.0,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
t0: 0,
},
children: [
{
name: 'Kyoujin',
seed: 13381,
mass: 0.01,
spin: [0.0, 0.0, 0.05],
geometry: makeCube([0, 6]),
orbit: {
excentricity: 0.0,
semimajorAxis: 20,
inclination: Math.PI / 2,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
t0: 0,
},
},
],
},
{
name: 'Tataooine',
seed: 1337,
mass: 50,
spin: [0.0, 0.0, 0.05],
geometry: getBodyGeometry(1337),
orbit: {
excentricity: 0.3,
semimajorAxis: 500,
inclination: 0.0,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
t0: 0,
},
children: [
{
name: 'Mun',
seed: 13371,
mass: 0.01,
spin: [0.0, 0.0, 0.05],
geometry: makeCube([0, 7]),
orbit: {
excentricity: 0.0,
semimajorAxis: 50,
inclination: Math.PI / 2,
ascendingNodeLongitude: 0,
periapsisArgument: 0,
t0: 0,
},
},
],
},
],
};
}
function initUiListeners(canvas: HTMLCanvasElement, context) {
const canvasClickHandler = () => {
canvas.requestPointerLock();
canvas.onclick = null;
// const clickListener = e => {
// switch(e.button) {
// case 0: // left click
// destroySelectedBlock(context);
// break;
// case 2: // right click
// makeDirBlock(context);
// break;
// }
// };
const clickListener = e => {};
const keyListener = e => {
if (e.type === 'keydown') {
if (e.repeat) return;
context.keys.add(e.code);
switch (e.code) {
case 'KeyF':
context.flying = !context.flying;
context.player.velocity = [0, 0, 0];
delete context.orbit;
return false;
case 'KeyL':
if (closeToPlanet(context)) {
context.landing = True;
}
return false;
case 'Space':
if (!context.flying) {
if (context.jumpAmount > 0) {
const amount = context.jumpForce;
context.player.velocity[1] = amount;
context.jumpAmount -= 1;
}
}
return false;
}
} else {
context.keys.delete(e.code);
}
};
const moveListener = e => {
// context.camera.orientation[0] -= e.movementY / 500;
// context.camera.orientation[1] -= e.movementX / 500;
context.camera.tf =[
context.camera.tf,
se3.roty(-e.movementX / 500),
se3.rotx(-e.movementY / 500),
].reduce(se3.product);
};
const changeListener = () => {
if (document.pointerLockElement === canvas) {
return;
}
document.removeEventListener('pointerdown', clickListener);
document.removeEventListener('pointerlockchange', changeListener);
document.removeEventListener('pointermove', moveListener);
document.removeEventListener('keydown', keyListener);
document.removeEventListener('keyup', keyListener);
canvas.onclick = canvasClickHandler;
};
document.addEventListener('pointerdown', clickListener);
document.addEventListener('pointerlockchange', changeListener);
document.addEventListener('pointermove', moveListener);
document.addEventListener('keydown', keyListener);
document.addEventListener('keyup', keyListener);
};
canvas.onclick = canvasClickHandler;
document.addEventListener('keydown', e => {
if (e.repeat) return;
switch (e.code) {
case 'F11':
canvas.requestFullscreen();
break;
}
});
}
function handleInput(context) {
const move = (forward: number, right: number) => {
if (context.keys.has('ShiftLeft')) {
forward *= 10;
right *= 10;
}
const tf = se3.product(
se3.orientationOnly(context.player.tf),
context.camera.tf,
);
const dir = [right, 0, -forward, 10];
if (context.flying) {
context.player.tf = [
context.player.tf,
se3.translation(...dir),
].reduce(se3.product);
} else {
const vel = context.player.velocity;
const dv = linalg.scale(se3.apply(tf, dir), 1/dir[3]);
context.player.velocity = linalg.add(vel, dv);
delete context.orbit;
}
};
context.keys.forEach(key => {
switch (key) {
case 'KeyW':
move(0.5, 0.0);
return;
case 'KeyA':
move(0.0, -0.5);
return;
case 'KeyS':
move(-0.5, 0.0);
return;
case 'KeyD':
move(0.0, 0.5);
return;
case 'KeyR':
context.timeOffset += 1;
return;
}
});
}
function slerp(current: linalg.Mat4, target: linalg.Mat4, maxVelocity: number) : linalg.Mat4 {
const q0 = quat.mat2Quat(current);
const q1 = quat.mat2Quat(target);
const dq = quat.diff(q1, q0);
const maxt = maxVelocity / quat.norm(dq);
const q = quat.normalize(quat.add(q0, quat.scale(dq, Math.min(1, maxt))));
return quat.quat2Mat(q);
}
function updatePhysics(time: number, context) {
const {player} = context;
const dt = time - (context.lastTime || 0);
context.lastTime = time;
player.position = se3.apply(player.tf, [0, 0, 0, 1]);
updateBodyPhysics(time, context.universe);
const dr = slerp(se3.identity(), context.camera.tf, 0.007);
player.tf = se3.product(player.tf, dr);
context.camera.tf = se3.product(context.camera.tf, se3.inverse(dr));
if (!context.flying) {
if (context.orbit === undefined) {
const newPos = linalg.add(player.position, linalg.scale(player.velocity, dt));
const dx = linalg.diff(newPos, player.position);
player.tf = se3.product(se3.translation(...dx), player.tf);
const body = findSoi(context.universe, context.player.position);
context.orbit = computeOrbit(player, body, time);
console.log(`orbiting ${body.name}, excentricity: ${context.orbit.excentricity}`);
context.orbitBody = body;
} else {
const {position: orbitPos, velocity: orbitVel} = getCartesianState(
context.orbit, context.orbitBody.mass, time);
if (orbitPos === undefined) {
const newPos = linalg.add(player.position, linalg.scale(player.velocity, dt));
const dx = linalg.diff(newPos, player.position);
player.tf = se3.product(se3.translation(...dx), player.tf);
} else {
const position = linalg.add(orbitPos, context.orbitBody.position);
const velocity = linalg.add(orbitVel, context.orbitBody.velocity);
player.velocity = velocity;
const dx = linalg.diff(position, player.position);
player.tf = se3.product(se3.translation(...dx), player.tf);
}
}
}
}
function updateGeometry(context, timeout_ms = 10) {
}
function tick(time: number, context) {
handleInput(context);
const simTime = time * 0.001 + context.timeOffset;
updatePhysics(simTime, context);
// world generation / geometry update
{
// frame time is typically 16.7ms, so this may lag a bit
let timeLeft = 10;
const start = performance.now();
updateGeometry(context, timeLeft);
}
draw(context);
const dt = (time - context.lastFrameTime) * 0.001;
context.lastFrameTime = time;
document.querySelector('#fps')!.textContent = `${1.0 / dt} fps`;
requestAnimationFrame(time => tick(time, context));
}
function makeCube(texture) {
return [
makeFace('-x', texture, [-0.5, 0, 0]),
makeFace('+x', texture, [+0.5, 0, 0]),
makeFace('-y', texture, [0, -0.5, 0]),
makeFace('+y', texture, [0, +0.5, 0]),
makeFace('-z', texture, [0, 0, -0.5]),
makeFace('+z', texture, [0, 0, +0.5]),
];
}
async function main() {
const canvas = document.querySelector('#game')! as HTMLCanvasElement;
// adjust canvas aspect ratio to that of the screen
canvas.height = screen.height / screen.width * canvas.width;
const gl = canvas.getContext('webgl');
if (gl === null) {
console.error('webgl not available')
return;
}
// TODO
// [ ] loading bar
// [x] spaceship
// [ ] landing
// [ ] huge planets
// [x] lighting
// [x] better lighting
// [ ] betterer lighting
// [x] optimize geometry generation
const modelPromise = loadObjModel('spaceship.obj');
const context = {
gl,
projMatrix: se3.perspective(Math.PI / 3, canvas.clientWidth / canvas.clientHeight, 0.1, 10000.0),
player: {
tf: se3.translation(0.0, 0.0, 80.0),
position: [0.0, 0.0, 80.0],
velocity: [0, 0, 0],
},
camera: {
orientation: [0, 0, 0],
tf: se3.identity(),
},
keys: new Set(),
lightDirection: [-0.2, -0.5, 0.4],
skyColor: [0.10, 0.15, 0.2],
ambiantLight: 0.4,
blockSelectDistance: 8,
flying: true,
isOnGround: false,
gravity: -17,
jumpForce: 6.5,
universe: getSolarSystem(0),
timeOffset: 0,
};
context.glContext = await initWorldGl(gl);
context.orbitGlContext = getOrbitDrawContext(gl);
initUiListeners(canvas, context);
const starshipGeom = await modelPromise;
console.log(`loaded ${starshipGeom.length} triangles`);
context.spaceship = starshipGeom;
requestAnimationFrame(time => tick(time, context));
}
window.onload = main;

41
skycraft/linalg.ts Normal file
View File

@ -0,0 +1,41 @@
export type Vec3 = [number, number, number];
export type Mat4 = number[];
export function cross(a: Vec3, b: Vec3) : Vec3 {
return [
a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2],
a[0] * b[1] - a[1] * b[0],
];
}
export function diff(a: Vec3, b: Vec3) : Vec3 {
return [
a[0] - b[0],
a[1] - b[1],
a[2] - b[2],
];
}
export function add(a: Vec3, b: Vec3) : Vec3 {
return [
a[0] + b[0],
a[1] + b[1],
a[2] + b[2],
];
}
export function norm(a: Vec3) : number {
return Math.sqrt(a[0] ** 2 + a[1] ** 2 + a[2] ** 2);
}
export function dot(a: Vec3, b: Vec3) : number {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
export function scale(a: Vec3, s: number) : Vec3 {
return [
a[0] * s,
a[1] * s,
a[2] * s,
];
}

74
skycraft/obj.ts Normal file
View File

@ -0,0 +1,74 @@
function parseObjLine(line: string, obj: any) {
line = line.trim();
if (line[0] === '#' || line.length < 1) {
return;
}
const elements = line.split(/\s+/);
obj[elements[0]].push(elements.slice(1));
}
function getFaces(obj: any) {
return obj.f.map(f => {
const face = {
'vertices': [],
'normals': [],
'textures': [],
};
if (f.length === 4) { // add duplicate vertices to make triangles
f.splice(3, 0, f[0]);
f.splice(4, 0, f[2]);
}
f.forEach(v => {
const [vidx, vtidx, vnidx] = v.split('/');
face.vertices.push((obj.v[vidx - 1] || []).map(Number));
face.normals.push((obj.vn[vnidx - 1] || []).map(Number));
//face.textures.push((obj.vt[vtidx] || []).map(Number));
face.textures.push([0, 0]);
});
return face;
});
}
export async function loadObjModel(url: string) {
const stlDataStream = (await fetch(url)).body;
if (stlDataStream === null) {
return Promise.reject(new Error(`Could not fetch ${url}`));
}
const obj = new Proxy({}, {
get: (target, name) =>{
if (!(name in target)) {
target[name] = [];
}
return target[name];
},
});
return new Promise((resolve, reject) => {
let partialLine = "";
const reader = stlDataStream.getReader();
const decoder = new TextDecoder();
function pump() {
reader.read().then(({ done, value }) => {
if (done) {
parseObjLine(partialLine, obj);
return resolve(getFaces(obj));
}
const textInput = decoder.decode(value);
const lines = textInput.split('\n');
if (lines.length > 1) {
parseObjLine(partialLine + lines[0], obj);
partialLine = "";
lines.slice(0, -1).forEach(line => {
parseObjLine(line, obj);
});
}
partialLine = partialLine + lines.at(-1);
pump();
});
}
pump();
});
}

280
skycraft/orbit.ts Normal file
View File

@ -0,0 +1,280 @@
import * as se3 from '../se3';
import * as linalg from './linalg';
import {Vec3} from './linalg';
interface Orbit {
excentricity: number,
semimajorAxis: number,
inclination: number,
ascendingNodeLongitude: number,
periapsisArgument: number,
t0: number,
lastE: number | undefined,
tf: number[] | undefined,
}
interface Body {
position: Vec3,
velocity: Vec3,
orientation: Vec3,
children: Body[],
mass: number,
orbit: Orbit,
spin: Vec3,
name: string,
}
export function updateBodyPhysics(time: number, body: Body, parentBody : Body | undefined = undefined) {
if (parentBody !== undefined) {
const mu = parentBody.mass;
const {position, velocity} = getCartesianState(body.orbit, mu, time);
body.position = [
parentBody.position[0] + position[0],
parentBody.position[1] + position[1],
parentBody.position[2] + position[2],
];
body.velocity = [
parentBody.velocity[0] + velocity[0],
parentBody.velocity[1] + velocity[1],
parentBody.velocity[2] + velocity[2],
];
} else {
body.position = [0, 0, 0];
body.velocity = [0, 0, 0];
}
body.orientation = getOrientation(body, time);
if (body.children !== undefined) {
for (const child of body.children) {
updateBodyPhysics(time, child, body);
}
}
}
export function findSoi(rootBody: Body, position: number[]) : Body {
const bodies = [rootBody];
let body : Body;
while (bodies.length > 0) {
body = bodies.shift()!;
if (body.children === undefined) {
return body;
}
for (const child of body.children) {
const soi = child.orbit.semimajorAxis * Math.pow(child.mass / body.mass, 2/5);
const pos = position;
const bod = child.position;
const dr = [pos[0] - bod[0], pos[1] - bod[1], pos[2] - bod[2]];
if (dr[0]**2 + dr[1]**2 + dr[2]**2 < soi**2) {
bodies.push(child);
}
}
}
return body!;
}
export function computeOrbit(player: any, body: Body, time: number) {
const {cross, diff, norm, dot, scale} = linalg;
const rvec = diff(player.position, body.position);
const r = norm(rvec);
if (norm(player.velocity) < 1e-6) {
// cheating
console.log('cheating');
player.velocity = scale(cross([1, 1, 1], rvec), 0.01/(r**2));
}
const vvec = diff(player.velocity, body.velocity);
const v = norm(vvec);
const Hvec = cross(rvec, vvec);
const H = norm(Hvec);
const mu = body.mass;
const p = H**2 / mu;
const resinnu = Math.sqrt(p/mu) * dot(vvec, rvec)
const recosnu = p - r;
const e = Math.sqrt(resinnu**2 + recosnu**2) / r;
// should also work for hyperbolic orbits
const a = p/(1-e**2);
const x = scale(rvec, 1/r);
const yy = cross(Hvec, rvec);
const y = scale(yy, 1/norm(yy));
const z = scale(Hvec, 1/H);
// Om i and w can be skipped when we just give tf...
let Om = Math.atan2(Hvec[0], -Hvec[1]);
if (Hvec[0] === 0 && Hvec[1] === 0) {
Om = 0;
}
let i = Math.atan2(Math.sqrt(Hvec[0]**2 + Hvec[1]**2), Hvec[2]);
if (i * Math.sign((Hvec[0] || 1) * Math.sin(Om)) < 0) {
i *= -1;
}
const nu = Math.atan2(resinnu, recosnu);
let w = Math.atan2(rvec[2] / r / Math.sin(i), y[2] / Math.sin(i)) || 0 - nu;
let t0;
let E;
if (a < 0) {
E = 2 * Math.atanh(Math.sqrt((e-1)/(e+1)) * Math.tan(nu/2));
const n = Math.sqrt(-mu / (a**3));
t0 = time - (e*Math.sinh(E) - E) / n;
} else {
E = 2 * Math.atan(Math.sqrt((1-e)/(1+e)) * Math.tan(nu/2));
const n = Math.sqrt(mu / (a**3));
t0 = time - (1/n)*(E - e*Math.sin(E));
}
// column-major... see se3.js
const tf = se3.product([
x[0], x[1], x[2], 0,
y[0], y[1], y[2], 0,
z[0], z[1], z[2], 0,
0, 0, 0, 1,
], se3.rotz(-nu));
const orbit = {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
tf,
lastE: E,
};
return orbit;
}
/** Let's be honest I should clean this up.
*
* This is the part that solves Kepler's equation using Newton's method.
* For circular-ish orbits, one or two iterations are usually enough.
* More excentric orbits can take more (6 or 7?).
*
* For near-parabolic orbits (and some others?) it often fails to converge...
*/
export function getCartesianState(orbit: Orbit, mu: number, time: number) {
const {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
} = orbit;
let n = Math.sqrt(mu/(a**3));
if (a < 0) {
n = Math.sqrt(mu/-(a**3)); // mean motion
}
const M = n * (time - t0); // mean anomaly
// Newton's method
var E2 = 0;
var E = M;
let iterations = 0;
// a clever guess? https://link.springer.com/article/10.1023/A:1008200607490
// doesn't work at all.
while (Math.abs(E - E2) > 1e-10) {
if (e < 0.001) {
break;
}
E = E2;
if (e < 1) {
E2 = E - (E - e * Math.sin(E) - M) / (1 - e * Math.cos(E));
} else if (e > 1) {
E2 = E - (-E + e * Math.sinh(E) - M) / (e * Math.cosh(E) - 1);
} else {
E2 = E - (E + E*E*E/3 - M) / (1 + E*E);
}
iterations++;
if (iterations > 100) {
console.log('numerical instability');
return {};
}
}
orbit.lastE = E;
let nu;
if (e > 1) {
nu = 2 * Math.atan(Math.sqrt((e+1) / (e-1)) * Math.tanh(E/2));
} else {
nu = 2 * Math.atan(Math.sqrt((1+e) / (1-e)) * Math.tan(E/2));
}
const p = a * (1 - e**2);
const r = p / (1 + e * Math.cos(nu));// * ((a < 0) ? -1 : 1);
const rd = e * Math.sqrt(mu / p) * Math.sin(nu);
if (orbit.tf === undefined) {
// FIXME: this is actually borken. :/
orbit.tf = [se3.rotz(Om), se3.rotx(i), se3.rotz(w)].reduce(se3.product);
}
const tf = se3.product(orbit.tf, se3.rotz(nu));
const pos = se3.apply(tf, [r, 0, 0, 1]);
const vel = se3.apply(tf, [rd, Math.sqrt(p * mu) / r, 0, 1]);
return {
position: pos.slice(0, 3),
velocity: vel.slice(0, 3),
};
}
function getOrientation(body: Body, time: number) {
return se3.rotxyz(
body.spin[0] * time,
body.spin[1] * time,
body.spin[2] * time,
);
}
export function makeOrbitObject(gl: WebGLRenderingContext, glContext: any, orbit: Orbit, parentPosition: number[]) {
const position = parentPosition;
// FIXME: currently borken.
// const orientation = [
// se3.rotz(orbit.ascendingNodeLongitude),
// se3.rotx(orbit.inclination),
// se3.rotz(orbit.periapsisArgument),
// ].reduce(se3.product);
const orientation = orbit.tf;
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
const a = orbit.semimajorAxis;
const b = a * Math.sqrt(1 - orbit.excentricity**2);
const x = - orbit.semimajorAxis * orbit.excentricity;
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
x-a, -b, 0, -1, -1,
x-a, +b, 0, -1, +1,
x+a, -b, 0, +1, -1,
x+a, +b, 0, +1, +1,
]), gl.STATIC_DRAW);
const geometry = {
glBuffer: buffer,
numVertices: 4,
delete: () => gl.deleteBuffer(buffer),
};
return {
geometry,
orientation,
position,
glContext,
};
}

View File

@ -1,14 +1,14 @@
{
"name": "skycraft",
"version": "1.0.0",
"main": "index.js",
"main": "index.ts",
"license": "MIT",
"dependencies": {
"esbuild": "^0.14.2"
},
"scripts": {
"watch": "esbuild --outfile=app.js index.js --bundle --sourcemap=inline --watch",
"serve": "esbuild --outfile=app.js index.js --bundle --sourcemap=inline --servedir=.",
"build": "esbuild --outfile=app.js index.js --bundle --minify"
"watch": "esbuild --outfile=app.js index.ts --bundle --sourcemap=inline --watch",
"serve": "esbuild --outfile=app.js index.ts --bundle --sourcemap=inline --servedir=.",
"build": "esbuild --outfile=app.js index.ts --bundle --minify"
}
}

124
skycraft/quat.ts Normal file
View File

@ -0,0 +1,124 @@
import {Mat4} from './linalg';
import * as se3 from '../se3';
export interface Quat {
x: number,
y: number,
z: number,
w: number,
}
export function mat2Quat(m: Mat4) : Quat {
const q : Quat = {};
if (m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] > 0.0) {
const t = + m[0 * 4 + 0] + m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0;
const s = 0.5 / Math.sqrt(t);
q.w = s * t;
q.z = (m[1 * 4 + 0] - m[0 * 4 + 1]) * s;
q.y = (m[0 * 4 + 2] - m[2 * 4 + 0]) * s;
q.x = (m[2 * 4 + 1] - m[1 * 4 + 2]) * s;
} else if (m[0 * 4 + 0] > m[1 * 4 + 1] && m[0 * 4 + 0] > m[2 * 4 + 2]) {
const t = + m[0 * 4 + 0] - m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0;
const s = 0.5 / Math.sqrt(t);
q.x = s * t;
q.y = (m[1 * 4 + 0] + m[0 * 4 + 1]) * s;
q.z = (m[0 * 4 + 2] + m[2 * 4 + 0]) * s;
q.w = (m[2 * 4 + 1] - m[1 * 4 + 2]) * s;
} else if (m[1 * 4 + 1] > m[2 * 4 + 2]) {
const t = - m[0 * 4 + 0] + m[1 * 4 + 1] - m[2 * 4 + 2] + 1.0;
const s = 0.5 / Math.sqrt(t);
q.y = s * t;
q.x = (m[1 * 4 + 0] + m[0 * 4 + 1]) * s;
q.w = (m[0 * 4 + 2] - m[2 * 4 + 0]) * s;
q.z = (m[2 * 4 + 1] + m[1 * 4 + 2]) * s;
} else {
const t = - m[0 * 4 + 0] - m[1 * 4 + 1] + m[2 * 4 + 2] + 1.0;
const s = 0.5 / Math.sqrt(t);
q.z = s * t;
q.w = (m[1 * 4 + 0] - m[0 * 4 + 1]) * s;
q.x = (m[0 * 4 + 2] + m[2 * 4 + 0]) * s;
q.y = (m[2 * 4 + 1] + m[1 * 4 + 2]) * s;
}
return q;
}
export function quat2Mat(q: Quat): Mat4 {
const m: Mat4 = se3.identity();
const x2 = q.x + q.x;
const y2 = q.y + q.y;
const z2 = q.z + q.z;
{
const xx2 = q.x * x2;
const yy2 = q.y * y2;
const zz2 = q.z * z2;
m[0 * 4 + 0] = 1.0 - yy2 - zz2;
m[1 * 4 + 1] = 1.0 - xx2 - zz2;
m[2 * 4 + 2] = 1.0 - xx2 - yy2;
}
{
const yz2 = q.y * z2;
const wx2 = q.w * x2;
m[1 * 4 + 2] = yz2 - wx2;
m[2 * 4 + 1] = yz2 + wx2;
}
{
const xy2 = q.x * y2;
const wz2 = q.w * z2;
m[0 * 4 + 1] = xy2 - wz2;
m[1 * 4 + 0] = xy2 + wz2;
}
{
const xz2 = q.x * z2;
const wy2 = q.w * y2;
m[2 * 4 + 0] = xz2 - wy2;
m[0 * 4 + 2] = xz2 + wy2;
}
return m;
}
export function normalize(q: Quat) : Quat {
const n = norm(q);
if (n < 1e-10) {
return {x: 0, y: 0, z: 0, w: 1};
}
return {
x: q.x / n,
y: q.y / n,
z: q.z / n,
w: q.w / n,
};
}
export function diff(q0: Quat, q1: Quat) {
return {
x: q0.x - q1.x,
y: q0.y - q1.y,
z: q0.z - q1.z,
w: q0.w - q1.w,
};
}
export function norm(q: Quat) {
return Math.sqrt(q.x**2 + q.y**2 + q.z**2 + q.w**2);
}
export function add(q0: Quat, q1: Quat) {
return {
x: q0.x + q1.x,
y: q0.y + q1.y,
z: q0.z + q1.z,
w: q0.w + q1.w,
};
}
export function scale(q: Quat, a: number): Quat {
return {
x: a * q.x,
y: a * q.y,
z: a * q.z,
w: a * q.w,
};
}

3743
skycraft/spaceship.obj Normal file

File diff suppressed because it is too large Load Diff

BIN
skycraft/spaceship.stl Normal file

Binary file not shown.

76
skycraft/stl.ts Normal file
View File

@ -0,0 +1,76 @@
import * as linalg from './linalg';
function parseTriangle(triangleData) {
const dv = new DataView(triangleData.buffer);
function data(idx) {
const offset = 4 * idx;
return dv.getFloat32(offset, /*littleEndian=*/true);
}
const attributeByteCount = dv.getUint16(48, /*littleEndian=*/true);
console.assert(attributeByteCount === 0);
const x = [data(3), data(4), data(5)];
const y = [data(6), data(7), data(8)];
const z = [data(9), data(10), data(11)];
const n = linalg.cross(linalg.diff(y, x), linalg.diff(z, y));
return {
vertices: [x, y, z],
normals: new Array(3).fill(linalg.scale(n, 1 / linalg.norm(n))),
textures: new Array(3).fill([0, 0]),
}; // no normals, default texture
}
export async function loadStlModel(url) {
const stlDataStream = (await fetch(url)).body;
const triangles = [];
return new Promise((resolve, reject) => {
let bytesReceived = 0;
let gotHeader = false;
const partial = new Uint8Array(50); // each triangle is 50 bytes
let partialOffset = 0;
const reader = stlDataStream.getReader();
function pump() {
reader.read().then(({ done, value }) => {
if (done) {
return resolve(triangles);
}
const skipped = bytesReceived;
bytesReceived += value.length;
let inputOffset = 0;
if (!gotHeader) {
if (bytesReceived < 84) { // header + triangle count
return pump();
} else {
gotHeader = true;
inputOffset = 84 - skipped;
}
}
// parse triangle data
while (true) {
const spaceLeft = 50 - partialOffset;
console.assert(spaceLeft > 0);
const leftToCopy = value.length - inputOffset;
const toCopy = value.subarray(inputOffset, inputOffset + Math.min(leftToCopy, spaceLeft));
partial.set(toCopy, partialOffset);
if (leftToCopy < spaceLeft) {
break;
}
// parse a triangle!
triangles.push(parseTriangle(partial));
partialOffset = 0;
inputOffset += toCopy.length;
}
pump();
});
}
pump();
});
}

15
skycraft/tsconfig.json Normal file
View File

@ -0,0 +1,15 @@
{
"compilerOptions": {
"target": "es6",
"module": "commonjs",
"lib": ["es2022", "dom"],
"declaration": true,
"outDir": "dist",
"strict": true,
"esModuleInterop": true
},
"exclude": [
"node_modules",
"dist"
]
}