import { makeBufferFromFaces, makeFace} from "./geometry"; import { loadTexture, makeProgram } from "./gl"; import * as se3 from './se3'; const TEST_VSHADER = ` attribute vec3 aPosition; attribute vec3 aNormal; attribute vec2 aTextureCoord; uniform mat4 uProjection; uniform mat4 uModel; uniform mat4 uView; uniform vec3 uLightDirection; uniform float uAmbiantLight; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp mat4 modelview = uView * uModel; gl_Position = uProjection * modelview * vec4(aPosition, 1.0); lowp vec3 normal = mat3(uModel) * aNormal; lowp float diffuseAmount = max(dot(-uLightDirection, normal), 0.0); lowp vec3 ambiant = uAmbiantLight * vec3(1.0, 1.0, 0.9); vLighting = ambiant + vec3(1.0, 1.0, 1.0) * diffuseAmount; vTextureCoord = aTextureCoord; vDistance = length(modelview * vec4(aPosition, 1.0)); } `; const TEST_FSHADER = ` uniform sampler2D uSampler; uniform lowp vec3 uFogColor; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp vec4 color = texture2D(uSampler, vTextureCoord); lowp float fogamount = smoothstep(30.0, 90.0, vDistance); gl_FragColor = vec4(mix(vLighting * color.rgb, uFogColor, fogamount), color.a); } `; /** Draw. * * @param {WebGLRenderingContext} gl */ function draw(gl, params, objects) { gl.clearColor(0.6, 0.8, 1.0, 1.0); gl.clearDepth(1.0); gl.enable(gl.DEPTH_TEST); gl.depthFunc(gl.LEQUAL); gl.enable(gl.CULL_FACE); gl.cullFace(gl.BACK); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); const camrot = params.camera.orientation; const campos = params.camera.position; const viewMat = se3.product( se3.rotxyz(-camrot[0], -camrot[1], -camrot[2]), se3.translation(-campos[0], -campos[1], -campos[2]) ); for (const {program, texture, position, orientation, geometry} of objects) { // load those ahead of time const viewLoc = gl.getUniformLocation(program, 'uView'); const modelLoc = gl.getUniformLocation(program, 'uModel'); const projLoc = gl.getUniformLocation(program, 'uProjection'); const samplerLoc = gl.getUniformLocation(program, 'uSampler'); const fogColorLoc = gl.getUniformLocation(program, 'uFogColor'); const lightDirectionLoc = gl.getUniformLocation(program, 'uLightDirection'); const ambiantLoc = gl.getUniformLocation(program, 'uAmbiantLight'); const positionLoc = gl.getAttribLocation(program, 'aPosition'); const normalLoc = gl.getAttribLocation(program, 'aNormal'); const textureLoc = gl.getAttribLocation(program, 'aTextureCoord'); //const mvMatrix = se3.product(se3.translation(...position), se3.rotxyz(...orientation)); const mvMatrix = se3.identity(); gl.useProgram(program); gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMat)); gl.uniformMatrix4fv(modelLoc, false, new Float32Array(mvMatrix)); gl.uniformMatrix4fv(projLoc, false, new Float32Array(params.projMatrix)); gl.uniform3f(fogColorLoc, 0.6, 0.8, 1.0); gl.uniform3f(lightDirectionLoc, ...params.lightDirection); gl.uniform1f(ambiantLoc, params.ambiantLight); gl.bindBuffer(gl.ARRAY_BUFFER, geometry.glBuffer); gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0); gl.enableVertexAttribArray(positionLoc); gl.vertexAttribPointer(normalLoc, 3, gl.BYTE, true, 20, 12); gl.enableVertexAttribArray(normalLoc); gl.vertexAttribPointer(textureLoc, 2, gl.UNSIGNED_SHORT, true, 20, 16); gl.enableVertexAttribArray(textureLoc); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, texture); gl.uniform1i(samplerLoc, 0); gl.drawArrays(gl.TRIANGLES, 0, geometry.numVertices); // gl.bindTexture(gl.TEXTURE_2D, null); // gl.drawArrays(gl.LINE_STRIP, 0, geometry.numVertices); } } const stuff = { lastFrameTime: 0, }; function handleKeys(params) { const move = (forward, right) => { const dir = [right, 0, -forward, 1.0]; const camori = params.camera.orientation; const ori = se3.rotxyz(...camori); const tf = se3.apply(ori, dir); if (params.flying) { params.camera.position[0] += tf[0]; params.camera.position[2] += tf[2]; } if (params.isOnGround) { params.camera.velocity[0] = tf[0]; params.camera.velocity[2] = tf[2]; } else { params.camera.velocity[0] += tf[0] / 60; params.camera.velocity[2] += tf[2] / 60; if (Math.abs(params.camera.velocity[0]) > Math.abs(tf[0])) { params.camera.velocity[0] = tf[0]; } if (Math.abs(params.camera.velocity[2]) > Math.abs(tf[2])) { params.camera.velocity[2] = tf[2]; } } }; params.keys.forEach(key => { switch (key) { case 'KeyW': move(0.1, 0.0); return; case 'KeyA': move(0.0, -0.1); return; case 'KeyS': move(-0.1, 0.0); return; case 'KeyD': move(0.0, 0.1); return; case 'Space': if(params.flying) { params.camera.position[1] += 0.1; } else { if (params.jumpAmount > 0) { params.camera.velocity[1] = 5.0 / 60; params.jumpAmount -= 5.0; } } return; case 'ControlLeft': params.camera.position[1] -= 0.1; return; } }); } function getObjects(world, z, x, program, texture) { return world.chunks .filter(chunk => { if (chunk.position.z < z - 8 * 16) return false; if (chunk.position.z > z + 7 * 16) return false; if (chunk.position.x < x - 8 * 16) return false; if (chunk.position.x > x + 7 * 16) return false; if (chunk.buffer === undefined) { return false; } return true; }) .map(chunk => ({ position: [0.0, 0.0, 0.0], orientation: [0.0, 0.0, 0.0], program, geometry: chunk.buffer, texture, })); } function updatePhysics(params) { params.camera.velocity[1] -= 9.8 / 60 / 60; const oldPos = params.camera.position; const targetPos = params.flying ? oldPos : params.camera.position.map((v, i) => v + params.camera.velocity[i]); const {isOnGround, newPos} = checkCollision(oldPos, targetPos, params.world); params.camera.position = newPos; params.camera.velocity = newPos.map((v, i) => v - oldPos[i]); if (isOnGround) { params.jumpAmount = 20; params.camera.velocity = params.camera.velocity.map(v => v * 0.7); } params.isOnGround = isOnGround; } function tick(time, gl, params) { handleKeys(params); updatePhysics(params); const campos = params.camera.position; // expensive stuff, can take several cycles try { let timeLeft = 10; const start = performance.now(); generateMissingChunks(params.world, campos[2], campos[0], timeLeft); timeLeft -= performance.now() - start; updateWorldGeometry(gl, params.world, campos[2], campos[0], timeLeft); } catch (ex) { if (ex !== 'timesup') { throw ex; } } const objects = getObjects(params.world, campos[2], campos[0], params.program, params.texture); draw(gl, params, objects); const dt = (time - stuff.lastFrameTime) * 0.001; stuff.lastFrameTime = time; document.querySelector('#fps').textContent = `${1.0 / dt} fps`; document.querySelector('#lightDirVec').textContent = JSON.stringify(params.lightDirection); requestAnimationFrame(time => tick(time, gl, params)); } const BlockType = { AIR: 1, DIRT: 2, GRASS: 3, STONE: 4, }; function ghettoPerlinNoise(seed, x, y, gridSize = 16) { const dot = (vx, vy) => vx[0] * vy[0] + vx[1] * vy[1]; // super ghetto random const xorshift = (x) => { x ^= x << 13; x ^= x >> 7; x ^= x << 17; return x; }; const randGrad = (x0, y0) => { const rand = xorshift(1337 * x0 + seed + 80085 * y0); return [Math.sin(rand), Math.cos(rand)]; }; const interpol = (a, b, x) => a + (x*x*(3 - 2*x)) * (b - a); const x0 = Math.floor(x / gridSize); const y0 = Math.floor(y / gridSize); const sx = x / gridSize - x0; const sy = y / gridSize - y0; const n0 = dot(randGrad(x0, y0), [sx, sy]); const n1 = dot(randGrad(x0 + 1, y0), [sx - 1, sy]); const n2 = dot(randGrad(x0, y0 + 1), [sx, sy - 1]); const n3 = dot(randGrad(x0 + 1, y0 + 1), [sx - 1, sy - 1]); return interpol(interpol(n0, n1, sx), interpol(n2, n3, sx), sy); } function makeTerrain(x, y) { const seed = 1337; const fractalNoise = (x, y) => ( ghettoPerlinNoise(seed, x, y, 8) * 0.06 + ghettoPerlinNoise(seed, x, y, 16) * 0.125 + ghettoPerlinNoise(seed, x, y, 32) * 0.25 + ghettoPerlinNoise(seed, x, y, 64) * 0.5 ); const terrain = Array(16 * 16); for (let i = 0; i < 16; i++) { for (let j = 0; j < 16; j++) { terrain[i * 16 + j] = fractalNoise(x + i, y + j); } } return terrain; } function makeChunk(z, x) { const terrain = makeTerrain(z, x); const data = new Uint8Array(16 * 16 * 256); for (let i = 0; i < 16; i++) { for (let j = 0; j < 16; j++) { const height = Math.floor(64 + 64 * terrain[i * 16 + j]); // everything above is air // that block is grass // everything below is dirt const offset = i * (16 * 256) + j * 256; const stoneHeight = Math.min(52, height); data.set(Array(stoneHeight).fill(BlockType.STONE), offset); if (stoneHeight < height) { data.set(Array(height - 1 - stoneHeight).fill(BlockType.DIRT), offset + stoneHeight); data[offset + height - 1] = BlockType.GRASS; } data.set(Array(256 - height).fill(BlockType.AIR), offset + height); } } return { position: {z, x}, data, }; } function blockLookup(world, x, y, z) { const midx = x + 0.5; const midy = y + 0.5; const midz = z + 0.5; const chunki = Math.floor(midz / 16); const chunkj = Math.floor(midx / 16); const chunk = world.chunkMap.get(chunki, chunkj); if (chunk === undefined) { return { type: BlockType.STONE, x, y, z, }; } const i = Math.floor(midz - chunki * 16); const j = Math.floor(midx - chunkj * 16); const k = Math.floor(midy); return { type: chunk.data[256 * (16*i + j) + k], x: j, y: k, z: i, }; } function makeChunkBuffer(gl, data, z0, x0, lookup) { const sideNeighbors = (bi, i, j, k) => { if (i === 0 || j === 0 || i === 15 || j === 15) { return [ { block: lookup(i - 1, j, k), dir: '-z', faceCenter: [x0 + j, k, z0 + i - 0.5] }, { block: lookup(i + 1, j, k), dir: '+z', faceCenter: [x0 + j, k, z0 + i + 0.5] }, { block: lookup(i, j - 1, k), dir: '-x', faceCenter: [x0 + j - 0.5, k, z0 + i] }, { block: lookup(i, j + 1, k), dir: '+x', faceCenter: [x0 + j + 0.5, k, z0 + i] }, ]; } return [ { block: data[bi - 256 * 16], dir: '-z', faceCenter: [x0 + j, k, z0 + i - 0.5] }, { block: data[bi + 256 * 16], dir: '+z', faceCenter: [x0 + j, k, z0 + i + 0.5] }, { block: data[bi - 256], dir: '-x', faceCenter: [x0 + j - 0.5, k, z0 + i] }, { block: data[bi + 256], dir: '+x', faceCenter: [x0 + j + 0.5, k, z0 + i] }, ]; }; const faces = []; for (let i = 0; i < 16; i++) { for (let j = 0; j < 16; j++) { let bi = i * 16 * 256 + j * 256; for (let k = 0; k < 256; k++, bi++) { const upTexture = (() => { switch (data[bi - 1]) { case BlockType.GRASS: return [0, 15]; case BlockType.DIRT: return [2, 15]; case BlockType.STONE: return [3, 15]; } })(); if (data[bi] == BlockType.AIR) { faces.push(makeFace('+y', upTexture, [x0 + j, k - 0.5, z0 + i])); break; } const sideTexture = (() => { switch (data[bi]) { case BlockType.GRASS: return [1, 15]; case BlockType.DIRT: return [2, 15]; case BlockType.STONE: return [3, 15]; } })(); for (let {block, dir, faceCenter} of sideNeighbors(bi, i, j, k)) { if (block === BlockType.AIR) { faces.push(makeFace(dir, sideTexture, faceCenter)); } } } } } return makeBufferFromFaces(gl, faces); } // - data <-- need to generate the first time, update when m&p // - faces <-- need to generate once when chunk enters view // - buffers <-- need to generate every time geometry changes? // --> could also render chunks 1 by 1 class ChunkMap { map = {}; key(i, j) { // meh, this limits us to 65536 chunks in the x direction :/ return (i << 16) + j; } get(i, j) { return this.map[this.key(i, j)]; } set(i, j, x) { this.map[this.key(i, j)] = x; } has(i, j) { return this.key(i, j) in this.map; } } /** Makes a brave new world, centered at (0, 0). */ function makeWorld() { return generateMissingChunks({chunks: [], chunkMap: new ChunkMap()}, 0, 0); } /** Update the world, generating missing chunks if necessary. */ function generateMissingChunks(world, z, x, timeLimit = 10000) { const ic = Math.floor(z / 16); const jc = Math.floor(x / 16); const start = performance.now(); for (let i = ic - 8; i < ic + 8; i++) { for (let j = jc - 8; j < jc + 8; j++) { if (world.chunkMap.has(i, j)) { continue; } const chunk = makeChunk(i * 16, j * 16); world.chunks.push(chunk); world.chunkMap.set(i, j, chunk); invalidateChunkGeometry(world, i - 1, j); invalidateChunkGeometry(world, i + 1, j); invalidateChunkGeometry(world, i, j - 1); invalidateChunkGeometry(world, i, j + 1); if (performance.now() - start > timeLimit) { throw 'timesup'; } } } return world; } function invalidateChunkGeometry(world, i, j) { const chunk = world.chunkMap.get(i, j); if (chunk === undefined) { return; } if (chunk.buffer === undefined) { return; } chunk.buffer.delete(); delete chunk.buffer; } /** Generates geometry for all visible chunks. */ function updateWorldGeometry(gl, world, z, x, timeLimit = 10000) { const ic = Math.floor(z / 16); const jc = Math.floor(x / 16); const blockIndex = (i, j, k) => 256 * (i*16 +j) + k; const start = performance.now(); // k. Now, generate buffers for all chunks for (let radius = 0; radius < 8; radius++) { for (let i = ic - radius; i < ic + radius; i++) { for (let j = jc - radius; j < jc + radius; j++) { const chunk = world.chunkMap.get(i, j); if (chunk.buffer !== undefined) { continue; } const chunkz = 16 * i; const chunkx = 16 * j; const lookup = (i, j, k) => blockLookup(world, j + chunkx, k, i + chunkz).type; chunk.buffer = makeChunkBuffer(gl, chunk.data, chunk.position.z, chunk.position.x, lookup); // throttle this for fluidity if (performance.now() - start > timeLimit) { throw 'timesup'; } } } } } function checkCollision(curPos, newPos, world) { // I guess Steve is about 1.7 m tall? // he also has a 60x60 cm axis-aligned square section '^_^ // box is centered around the camera const steveBB = [ [-0.3, 0.2, -0.3], [-0.3, 0.2, 0.3], [0.3, 0.2, -0.3], [0.3, 0.2, 0.3], [-0.3, -1.5, -0.3], [-0.3, -1.5, 0.3], [0.3, -1.5, -0.3], [0.3, -1.5, 0.3], ]; const translate = (v, pos) => v.map((el, i) => el + pos[i]); let dp = newPos.map((x, i) => x - curPos[i]); let isOnGround = false; for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => i === j ? x + newPos[j] : x + curPos[j]); for (const point of steveBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { if (i === 1 && dp[i] < 0) { isOnGround = true; } dp[i] = 0; } } } for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => curPos[j] + x + dp[j]); for (const point of steveBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { dp[i] = 0; } } } return { newPos: translate(curPos, dp), isOnGround, }; } // Stuff I need to do: // [x] a skybox // [x] a movable camera // [x] some kind of gravity // [x] collision detection // [x] more blocks // [ ] ability to mine & place // [x] generating & loading of more chunks // [x] distance fog // [ ] different biomes (with different noise stats) // [ ] non-flowy water // [ ] flowy water // [ ] ALIGN CHUNK WITH WORLD COORDS // [x] better controls // [ ] save the world (yay) to local storage (bah) async function main() { const canvas = document.querySelector('#game'); const gl = canvas.getContext('webgl'); if (gl === null) { console.error('webgl not available') return; } const program = makeProgram(gl, TEST_VSHADER, TEST_FSHADER); const texture = await loadTexture(gl, 'texture.png'); const params = { projMatrix: se3.perspective(Math.PI / 3, canvas.clientWidth / canvas.clientHeight, 0.1, 100.0), camera: { position: [0.0, 70.5, 0.0], orientation: [0.0, Math.PI, 0.0], velocity: [0, 0, 0], }, keys: new Set(), world: makeWorld(), texture, program, lightDirection: [-0.2, -0.5, 0.4], ambiantLight: 0.7, flying: false, isOnGround: false, } document.querySelector('#lightx').oninput = e => { params.lightDirection[0] = e.target.value / 100; }; document.querySelector('#lighty').oninput = e => { params.lightDirection[1] = e.target.value / 100; }; document.querySelector('#lightz').oninput = e => { params.lightDirection[2] = e.target.value / 100; }; document.querySelector('#ambiant').oninput = e => { params.ambiantLight = e.target.value / 100; }; const collapsibles = document.getElementsByClassName("collapsible"); for (const collapsible of collapsibles) { collapsible.onclick = e => { const content = collapsible.nextElementSibling; if (content.style.height === 'fit-content') { content.style.height = '0px'; } else { content.style.height = 'fit-content'; } }; } canvas.onclick = e => { canvas.requestPointerLock(); const keyListener = e => { if (e.type === 'keydown') { params.keys.add(e.code); switch (e.code) { case 'KeyF': params.flying = !params.flying; console.log(`flying: ${params.flying}`) } } else { params.keys.delete(e.code); } }; const moveListener = e => { params.camera.orientation[1] -= e.movementX / 500; params.camera.orientation[0] -= e.movementY / 500; }; const changeListener = () => { if (document.pointerLockElement === canvas) { return; } document.removeEventListener('pointerlockchange', changeListener); document.removeEventListener('pointermove', moveListener); document.removeEventListener('keydown', keyListener); document.removeEventListener('keyup', keyListener); }; document.addEventListener('pointerlockchange', changeListener); document.addEventListener('pointermove', moveListener); document.addEventListener('keydown', keyListener); document.addEventListener('keyup', keyListener); }; requestAnimationFrame(time => tick(time, gl, params)); } window.onload = main;