import { loadTexture, makeProgram } from "./gl"; import { blockLookup, BlockType, generateMissingChunks, makeWorld, updateWorldGeometry } from './world'; import * as se3 from './se3'; import { makeBufferFromFaces, makeFace } from "./geometry"; const TEST_VSHADER = ` attribute vec3 aPosition; attribute vec3 aNormal; attribute vec2 aTextureCoord; uniform mat4 uProjection; uniform mat4 uModel; uniform mat4 uView; uniform vec3 uLightDirection; uniform float uAmbiantLight; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp mat4 modelview = uView * uModel; gl_Position = uProjection * modelview * vec4(aPosition, 1.0); lowp vec3 normal = mat3(uModel) * aNormal; lowp float diffuseAmount = max(dot(-uLightDirection, normal), 0.0); lowp vec3 ambiant = uAmbiantLight * vec3(1.0, 1.0, 0.9); vLighting = ambiant + vec3(1.0, 1.0, 1.0) * diffuseAmount; vTextureCoord = aTextureCoord; vDistance = length(modelview * vec4(aPosition, 1.0)); } `; const TEST_FSHADER = ` uniform sampler2D uSampler; uniform lowp vec3 uFogColor; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp vec4 color = texture2D(uSampler, vTextureCoord); lowp float fogamount = smoothstep(30.0, 90.0, vDistance); gl_FragColor = vec4(mix(vLighting * color.rgb, uFogColor, fogamount), color.a); } `; /** Draw. * * @param {WebGLRenderingContext} gl */ function draw(gl, params, objects) { const skyColor = [0.6, 0.8, 1.0]; gl.clearColor(...skyColor, 1.0); gl.clearDepth(1.0); gl.enable(gl.DEPTH_TEST); gl.depthFunc(gl.LEQUAL); gl.enable(gl.CULL_FACE); gl.cullFace(gl.BACK); gl.enable(gl.BLEND); gl.blendFunc(gl.SRC_ALPHA, gl.ONE_MINUS_SRC_ALPHA); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); const camrot = params.camera.orientation; const campos = params.camera.position; const viewMatrix = se3.product( se3.rotxyz(-camrot[0], -camrot[1], -camrot[2]), se3.translation(-campos[0], -campos[1], -campos[2]) ); let lastGlContext; for (const {glContext, position, orientation, geometry} of objects) { if (glContext !== lastGlContext) { glContext.setupScene({ projectionMatrix: params.projMatrix, viewMatrix, fogColor: skyColor, lightDirection: params.lightDirection, ambiantLightAmount: params.ambiantLight, }); } lastGlContext = glContext; glContext.drawObject({ position, orientation, glBuffer: geometry.glBuffer, numVertices: geometry.numVertices, }); } } const stuff = { lastFrameTime: 0, }; function handleKeys(params) { const move = (forward, right) => { const dir = [right, 0, -forward, 1.0]; const ori = se3.roty(params.camera.orientation[1]); const tf = se3.apply(ori, dir); if (params.flying) { params.camera.position[0] += tf[0]; params.camera.position[2] += tf[2]; } if (params.isOnGround) { params.camera.velocity[0] = tf[0]; params.camera.velocity[2] = tf[2]; } else { params.camera.velocity[0] += tf[0] / 60; params.camera.velocity[2] += tf[2] / 60; if (Math.abs(params.camera.velocity[0]) > Math.abs(tf[0])) { params.camera.velocity[0] = tf[0]; } if (Math.abs(params.camera.velocity[2]) > Math.abs(tf[2])) { params.camera.velocity[2] = tf[2]; } } }; params.keys.forEach(key => { switch (key) { case 'KeyW': move(0.1, 0.0); return; case 'KeyA': move(0.0, -0.1); return; case 'KeyS': move(-0.1, 0.0); return; case 'KeyD': move(0.0, 0.1); return; case 'Space': if(params.flying) { params.camera.position[1] += 0.1; } else { if (params.jumpAmount > 0) { const amount = 0.4 * params.jumpAmount; params.camera.velocity[1] += amount / 60; params.jumpAmount -= amount; } } return; case 'ControlLeft': params.camera.position[1] -= 0.1; return; } }); } function getObjects(world, z, x, glContext) { return world.chunks .filter(chunk => { if (chunk.position.z < z - 8 * 16) return false; if (chunk.position.z > z + 7 * 16) return false; if (chunk.position.x < x - 8 * 16) return false; if (chunk.position.x > x + 7 * 16) return false; if (chunk.buffer === undefined) { return false; } return true; }) .map(chunk => ({ position: [0.0, 0.0, 0.0], orientation: [0.0, 0.0, 0.0], geometry: chunk.buffer, glContext, })); } function updatePhysics(params) { params.camera.velocity[1] -= 9.8 / 60 / 60; const oldPos = params.camera.position; const targetPos = params.flying ? oldPos : params.camera.position.map((v, i) => v + params.camera.velocity[i]); const {isOnGround, newPos} = checkCollision(oldPos, targetPos, params.world); params.camera.position = newPos; params.camera.velocity = newPos.map((v, i) => v - oldPos[i]); if (isOnGround) { params.jumpAmount = 6; params.camera.velocity = params.camera.velocity.map(v => v * 0.7); } params.isOnGround = isOnGround; } function tagABlock(gl, params, objects) { const dir = [0, 0, -1, 1.0]; const camori = params.camera.orientation; const ori = se3.inverse(se3.rotxyz(-camori[0], -camori[1], -camori[2])); const viewDirection = se3.apply(ori, dir).slice(0, 3); const face = markBlock(params.world, params.camera.position, viewDirection, params.blockSelectDistance); if (face === undefined) { return; } if (params.tagBuffer !== undefined) { gl.deleteBuffer(params.tagBuffer.glBuffer); delete params.tagBuffer; } const buffer = makeBufferFromFaces(gl, [face]); params.tagBuffer = buffer; const obj = { position: [0.0, 0.0, 0.0], orientation: [0.0, 0.0, 0.0], geometry: buffer, glContext: params.worldGl, }; objects.push(obj); } function tick(time, gl, params) { handleKeys(params); updatePhysics(params); const campos = params.camera.position; // expensive stuff, can take several cycles try { let timeLeft = 10; const start = performance.now(); generateMissingChunks(params.world, campos[2], campos[0], timeLeft); timeLeft -= performance.now() - start; updateWorldGeometry(gl, params.world, campos[2], campos[0], timeLeft); } catch (ex) { if (ex !== 'timesup') { throw ex; } } const objects = getObjects(params.world, campos[2], campos[0], params.worldGl); tagABlock(gl, params, objects); draw(gl, params, objects); const dt = (time - stuff.lastFrameTime) * 0.001; stuff.lastFrameTime = time; document.querySelector('#fps').textContent = `${1.0 / dt} fps`; document.querySelector('#lightDirVec').textContent = JSON.stringify(params.lightDirection); requestAnimationFrame(time => tick(time, gl, params)); } function checkCollision(curPos, newPos, world) { // I guess Steve is about 1.7 m tall? // he also has a 60x60 cm axis-aligned square section '^_^ // box is centered around the camera const steveBB = [ [-0.3, 0.2, -0.3], [-0.3, 0.2, 0.3], [0.3, 0.2, -0.3], [0.3, 0.2, 0.3], [-0.3, -1.5, -0.3], [-0.3, -1.5, 0.3], [0.3, -1.5, -0.3], [0.3, -1.5, 0.3], ]; const translate = (v, pos) => v.map((el, i) => el + pos[i]); let dp = newPos.map((x, i) => x - curPos[i]); let isOnGround = false; for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => i === j ? x + newPos[j] : x + curPos[j]); for (const point of steveBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { if (i === 1 && dp[i] < 0) { isOnGround = true; } dp[i] = 0; } } } for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => curPos[j] + x + dp[j]); for (const point of steveBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { dp[i] = 0; } } } return { newPos: translate(curPos, dp), isOnGround, }; } function minIndex(arr) { return arr.reduce((min, val, i) => val >= arr[min] ? min : i, -1); } function movePoint(p, s, u) { return [p[0] + s * u[0], p[1] + s * u[1], p[2] + s * u[2]]; } function rayThroughGrid(origin, direction, maxDistance) { const range = i => [...Array(i).keys()]; const nextGrid = range(3).map(i => direction[i] > 0 ? Math.floor(origin[i] + 0.5) + 0.5 : Math.floor(origin[i] + 0.499) - 0.5); const distanceToGrid = range(3).map(i => (nextGrid[i] - origin[i]) / direction[i]) .map(v => v === 0.0 ? Number.POSITIVE_INFINITY : v); const axis = minIndex(distanceToGrid); const rayLength = distanceToGrid[axis]; if (rayLength > maxDistance) { return {}; } const position = movePoint(origin, distanceToGrid[axis], direction); const normal = range(3).map(i => i === axis ? -Math.sign(direction[i]) : 0); return {position, normal, distance: rayLength}; } function castRay(world, origin, direction, maxDistance) { let currentPoint = origin; while (maxDistance > 0) { const {position, normal, distance} = rayThroughGrid(currentPoint, direction, maxDistance); if (position === undefined) { return; } maxDistance -= distance; currentPoint = position; const blockCenter = movePoint(position, -0.5, normal); const block = blockLookup(world, ...blockCenter); if (block.type === BlockType.AIR) { continue; } return { block, normal, }; } } function viewDirection(params) { const dir = [0, 0, -1, 1.0]; const camori = params.camera.orientation; const ori = se3.inverse(se3.rotxyz(-camori[0], -camori[1], -camori[2])); return se3.apply(ori, dir).slice(0, 3); } function destroySelectedBlock(params) { const hit = castRay(params.world, params.camera.position, viewDirection(params), params.blockSelectDistance); if (hit === undefined || hit.block.type === BlockType.UNDEFINED) { return; } const trimFaces = chunk => { chunk.faces = chunk.faces.filter(({blockIndex}) => chunk.data[blockIndex] !== BlockType.AIR); } hit.block.chunk.data[hit.block.blockIndex] = BlockType.AIR; if (hit.block.chunk.buffer !== undefined) { hit.block.chunk.buffer.delete(); delete hit.block.chunk.buffer; } trimFaces(hit.block.chunk); const [bx, by, bz] = hit.block.centerPosition; const neighbors = [ { block: blockLookup(params.world, bx - 1, by, bz), dir: '+x' }, { block: blockLookup(params.world, bx + 1, by, bz), dir: '-x' }, { block: blockLookup(params.world, bx, by - 1, bz), dir: '+y' }, { block: blockLookup(params.world, bx, by + 1, bz), dir: '-y' }, { block: blockLookup(params.world, bx, by, bz - 1), dir: '+z' }, { block: blockLookup(params.world, bx, by, bz + 1), dir: '-z' }, ]; neighbors .filter(({ block }) => block.type !== BlockType.AIR && block.type !== BlockType.UNDEFINED) .forEach(({ block, dir }) => { const blocki = Math.floor(block.blockIndex / (16 * 256)); const blockj = Math.floor(block.blockIndex / 256) - 16 * blocki; const blockk = block.blockIndex % 256; block.chunk.faces.push(createChunkFace(block, dir)); trimFaces(block.chunk); if (block.chunk.buffer !== undefined) { block.chunk.buffer.delete(); delete block.chunk.buffer; } }); } function markBlock(world, cameraPosition, direction, maxDistance) { const hit = castRay(world, cameraPosition, direction, maxDistance); if (hit === undefined || hit.block.type === BlockType.UNDEFINED) { return; } const texture = [0, 14]; const {normal, block} = hit; const faceCenter = movePoint(block.centerPosition, 0.51, normal); if (normal[0] > 0) { return makeFace('+x', texture, faceCenter); } else if (normal[0] < 0) { return makeFace('-x', texture, faceCenter); } else if (normal[1] > 0) { return makeFace('+y', texture, faceCenter); } else if (normal[1] < 0) { return makeFace('-y', texture, faceCenter); } else if (normal[2] > 0) { return makeFace('+z', texture, faceCenter); } else if (normal[2] < 0) { return makeFace('-z', texture, faceCenter); } } // Mine & place // ------------ // [x] ray casting // [x] block outline // [ ] crosshair // [ ] dynamic terrain re-rendering // [ ] should use a linked list of air contact blocks // --> might not be needed. Only need to re-render a single chunk, // should be fast enough. We render 16 of them every time we // walk 16 blocks in any direction. // Stuff I need to do: // [x] a skybox // [x] a movable camera // [x] some kind of gravity // [x] collision detection // [x] more blocks // [ ] ability to mine & place // [x] generating & loading of more chunks // [x] distance fog // [ ] different biomes (with different noise stats) // [ ] non-flowy water // [ ] flowy water // [ ] ALIGN CHUNK WITH WORLD COORDS // [x] better controls // [ ] save the world (yay) to local storage (bah) async function initWorldGl(gl) { const program = makeProgram(gl, TEST_VSHADER, TEST_FSHADER); const texture = await loadTexture(gl, 'texture.png'); // load those ahead of time const viewLoc = gl.getUniformLocation(program, 'uView'); const modelLoc = gl.getUniformLocation(program, 'uModel'); const projLoc = gl.getUniformLocation(program, 'uProjection'); const samplerLoc = gl.getUniformLocation(program, 'uSampler'); const fogColorLoc = gl.getUniformLocation(program, 'uFogColor'); const lightDirectionLoc = gl.getUniformLocation(program, 'uLightDirection'); const ambiantLoc = gl.getUniformLocation(program, 'uAmbiantLight'); const positionLoc = gl.getAttribLocation(program, 'aPosition'); const normalLoc = gl.getAttribLocation(program, 'aNormal'); const textureLoc = gl.getAttribLocation(program, 'aTextureCoord'); const setupScene = (sceneParams) => { const { projectionMatrix, viewMatrix, fogColor, lightDirection, ambiantLightAmount, } = sceneParams; gl.useProgram(program); gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix)); gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix)); gl.uniform3fv(fogColorLoc, fogColor); gl.uniform3fv(lightDirectionLoc, lightDirection); gl.uniform1f(ambiantLoc, ambiantLightAmount); // doing this here because it's the same for all world stuff gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity())); gl.uniform1i(samplerLoc, 0); gl.enableVertexAttribArray(positionLoc); gl.enableVertexAttribArray(normalLoc); gl.enableVertexAttribArray(textureLoc); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, texture); }; const drawObject = (objectParams) => { const { glBuffer, numVertices, } = objectParams; gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer); gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0); gl.vertexAttribPointer(normalLoc, 3, gl.BYTE, true, 20, 12); gl.vertexAttribPointer(textureLoc, 2, gl.UNSIGNED_SHORT, true, 20, 16); gl.drawArrays(gl.TRIANGLES, 0, numVertices); }; return { setupScene, drawObject, }; } async function main() { const canvas = document.querySelector('#game'); const gl = canvas.getContext('webgl'); if (gl === null) { console.error('webgl not available') return; } const params = { projMatrix: se3.perspective(Math.PI / 3, canvas.clientWidth / canvas.clientHeight, 0.1, 100.0), camera: { position: [0.0, 70.5, 0.0], orientation: [0.0, Math.PI, 0.0], velocity: [0, 0, 0], }, keys: new Set(), lightDirection: [-0.2, -0.5, 0.4], ambiantLight: 0.7, blockSelectDistance: 8, flying: false, isOnGround: false, world: makeWorld(), worldGl: await initWorldGl(gl), } document.querySelector('#lightx').oninput = e => { params.lightDirection[0] = e.target.value / 100; }; document.querySelector('#lighty').oninput = e => { params.lightDirection[1] = e.target.value / 100; }; document.querySelector('#lightz').oninput = e => { params.lightDirection[2] = e.target.value / 100; }; document.querySelector('#ambiant').oninput = e => { params.ambiantLight = e.target.value / 100; }; const collapsibles = document.getElementsByClassName("collapsible"); for (const collapsible of collapsibles) { collapsible.onclick = e => { const content = collapsible.nextElementSibling; if (content.style.height === 'fit-content') { content.style.height = '0px'; } else { content.style.height = 'fit-content'; } }; } canvas.onclick = e => { canvas.requestPointerLock(); const keyListener = e => { if (e.type === 'keydown') { params.keys.add(e.code); switch (e.code) { case 'KeyF': params.flying = !params.flying; console.log(`flying: ${params.flying}`) } } else { params.keys.delete(e.code); } }; const moveListener = e => { params.camera.orientation[1] -= e.movementX / 500; params.camera.orientation[0] -= e.movementY / 500; params.camera.orientation[0] = Math.min(Math.max( params.camera.orientation[0], -Math.PI / 2 ), Math.PI / 2); }; const changeListener = () => { if (document.pointerLockElement === canvas) { return; } document.removeEventListener('pointerlockchange', changeListener); document.removeEventListener('pointermove', moveListener); document.removeEventListener('keydown', keyListener); document.removeEventListener('keyup', keyListener); }; document.addEventListener('pointerlockchange', changeListener); document.addEventListener('pointermove', moveListener); document.addEventListener('keydown', keyListener); document.addEventListener('keyup', keyListener); }; requestAnimationFrame(time => tick(time, gl, params)); } window.onload = main;