import { makeBufferFromFaces, makeFace} from "./geometry"; import { loadTexture, makeProgram } from "./gl"; import * as se3 from './se3'; import { makeTerrain, random } from "./terrain"; const VSHADER = ` attribute vec3 aPosition; attribute vec3 aNormal; attribute vec2 aTextureCoord; uniform mat4 uProjection; uniform mat4 uModel; uniform mat4 uView; uniform vec3 uLightDirection; uniform float uAmbiantLight; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp mat4 modelview = uView * uModel; gl_Position = uProjection * modelview * vec4(aPosition, 1.0); lowp vec3 normal = mat3(uModel) * aNormal; lowp float diffuseAmount = max(dot(-uLightDirection, normal), 0.0); lowp vec3 ambiant = uAmbiantLight * vec3(1.0, 1.0, 0.9); vLighting = ambiant + vec3(1.0, 1.0, 1.0) * diffuseAmount; vTextureCoord = aTextureCoord; vDistance = length(modelview * vec4(aPosition, 1.0)); } `; const FSHADER = ` uniform sampler2D uSampler; uniform lowp vec3 uFogColor; varying highp vec2 vTextureCoord; varying lowp vec3 vLighting; varying lowp float vDistance; void main() { highp vec4 color = texture2D(uSampler, vTextureCoord); lowp float fogamount = smoothstep(40.0, 100.0, vDistance); gl_FragColor = mix(vec4(vLighting * color.rgb, color.a), vec4(uFogColor, 1.0), fogamount); } `; export const BlockType = { UNDEFINED: 0, AIR: 1, DIRT: 2, GRASS: 3, STONE: 4, WATER: 5, TREE: 6, LEAVES: 7, }; function hasATree(seed, z, x) { const rand = random(seed, z, x); return (rand % 333 === 123); } function makeATree(data, pos, seed, chunkz, chunkx) { const height = 3 + random(seed, chunkz + pos[0], chunkx + pos[1]) % 6; const offset = 256 * (16 * pos[0] + pos[1]); const firstBlock = pos[2]; for (let i = 0; i < height; i++) { data[offset + firstBlock + i] = BlockType.TREE; } function setBlock(i, j, k, type) { if (i < 0 || j < 0 || k < 0 || i > 15 || j > 15 || k > 255) return; const offset = 256 * (16 * i + j) + k; if (data[offset] !== BlockType.AIR) return; data[offset] = type; } for (let i = pos[0] - 2; i < pos[0] + 3; i++) { for (let j = pos[1] - 2; j < pos[1] + 3; j++) { for (let k = firstBlock + height - 2; k < firstBlock + height + 2; k++) { setBlock(i, j, k, BlockType.LEAVES); } } } return firstBlock + height; } function makeChunk(z, x) { const seed = 1337; const terrain = makeTerrain(seed, z, x); const data = new Uint8Array(16 * 16 * 256); const trees = []; for (let i = 0; i < 16; i++) { for (let j = 0; j < 16; j++) { const height = terrain[i * 16 + j]; const offset = i * (16 * 256) + j * 256; const stoneHeight = Math.max(48, height); const grassHeight = stoneHeight + 8; const waterHeight = 67; let currentHeight = 0; data.set(Array(stoneHeight).fill(BlockType.STONE), offset); currentHeight = stoneHeight; data.set(Array(grassHeight - currentHeight).fill(BlockType.DIRT), offset + currentHeight); currentHeight = grassHeight; if (grassHeight < waterHeight) { data.set(Array(waterHeight - currentHeight).fill(BlockType.WATER), offset + currentHeight); currentHeight = waterHeight; } else { if (hasATree(seed, z + i, x + j)) { trees.push([i, j, currentHeight]); } else { data[offset + grassHeight - 1] = BlockType.GRASS; } } data.set(Array(256 - currentHeight).fill(BlockType.AIR), offset + currentHeight); } } for (const tree of trees) { makeATree(data, tree, seed, z, x); } return { position: {z, x}, data, }; } export function blockLookup(world, x, y, z) { if (y < 0.5 || y > 255.5) { return { type: BlockType.UNDEFINED, } } const midx = x + 0.5; const midy = y + 0.5; const midz = z + 0.5; const chunki = Math.floor(midz / 16); const chunkj = Math.floor(midx / 16); const chunk = world.chunkMap.get(chunki, chunkj); if (chunk === undefined) { return { type: BlockType.UNDEFINED, }; } const i = Math.floor(midz - chunki * 16); const j = Math.floor(midx - chunkj * 16); const k = Math.floor(midy); const blockIndex = 256 * (16*i + j) + k; return { type: chunk.data[blockIndex], centerPosition: [ Math.floor(midx), k, Math.floor(midz), ], chunk, blockIndex, }; } function faceTexture(type, dir) { switch (type) { case BlockType.GRASS: switch (dir) { case '+y': return [0, 15]; case '-y': return [2, 15]; default: return [1, 15]; } case BlockType.DIRT: return [2, 15]; case BlockType.STONE: return [3, 15]; case BlockType.WATER: return [4, 15]; case BlockType.TREE: switch (dir) { case '+y': case '-y': return [5, 15]; default: return [6, 15]; } case BlockType.LEAVES: return [7, 15]; default: return [0, 0]; } } function faceCenter(blockCenter, dir) { const [x, y, z] = blockCenter; switch (dir) { case '+x': return [x + 0.5, y, z]; case '-x': return [x - 0.5, y, z]; case '+y': return [x, y + 0.5, z]; case '-y': return [x, y - 0.5, z]; case '+z': return [x, y, z + 0.5]; case '-z': return [x, y, z - 0.5]; } } function isTransparent(type) { switch (type) { case BlockType.WATER: case BlockType.LEAVES: case BlockType.AIR: return true; default: return false; } } function makeFaceList(data, chunkz, chunkx, blockLookup) { const lookup = (i, j, k) => { if (i < 0 || j < 0 || i > 15 || j > 15) { return blockLookup(i, j, k); } if (k < 0 || k > 255) { return BlockType.UNDEFINED; } return data[256*(16*i + j) + k]; }; const neighbors = (i, j, k) => [ { block: lookup(i - 1, j, k), dir: '-z', faceCenter: [chunkx + j, k, chunkz + i - 0.5] }, { block: lookup(i + 1, j, k), dir: '+z', faceCenter: [chunkx + j, k, chunkz + i + 0.5] }, { block: lookup(i, j - 1, k), dir: '-x', faceCenter: [chunkx + j - 0.5, k, chunkz + i] }, { block: lookup(i, j + 1, k), dir: '+x', faceCenter: [chunkx + j + 0.5, k, chunkz + i] }, { block: lookup(i, j, k - 1), dir: '-y', faceCenter: [chunkx + j, k - 0.5, chunkz + i] }, { block: lookup(i, j, k + 1), dir: '+y', faceCenter: [chunkx + j, k + 0.5, chunkz + i] }, ]; const solidFaces = []; const transparentFaces = []; for (let i = 0; i < 16; i++) { for (let j = 0; j < 16; j++) { let bi = i * 16 * 256 + j * 256; for (let k = 0; k < 256; k++, bi++) { if (data[bi] === BlockType.AIR) { continue; } if (isTransparent(data[bi])) { for (const { dir, faceCenter } of neighbors(i, j, k) .filter(({ block }) => block === BlockType.AIR) ) { if (data[bi] === BlockType.WATER) { faceCenter[1] -= 0.15; } transparentFaces.push({ dir, face: makeFace(dir, faceTexture(data[bi], dir), faceCenter), blockIndex: bi, }); } } else { for (const { dir, faceCenter } of neighbors(i, j, k) .filter(({ block }) => isTransparent(block)) ) { solidFaces.push({ dir, face: makeFace(dir, faceTexture(data[bi], dir), faceCenter), blockIndex: bi, }); } } } } } return { solidFaces, transparentFaces, }; } // - data <-- need to generate the first time, update when m&p // - faces <-- need to generate once when chunk enters view // - buffers <-- need to generate every time geometry changes? // --> could also render chunks 1 by 1 class ChunkMap { map = {}; key(i, j) { // meh, this limits us to 65536 chunks in the x direction :/ return (i << 16) + j; } get(i, j) { return this.map[this.key(i, j)]; } set(i, j, x) { this.map[this.key(i, j)] = x; } has(i, j) { return this.key(i, j) in this.map; } } /** Makes a brave new (empty) world */ export function makeWorld() { return {chunks: [], chunkMap: new ChunkMap()}; } /** Update the world, generating missing chunks if necessary. */ export function generateMissingChunks(world, z, x, timeLimit = 10000) { const ic = Math.floor(z / 16); const jc = Math.floor(x / 16); const start = performance.now(); for (let radius = 1; radius < 8; radius++) { for (let i = ic - radius; i < ic + radius; i++) { for (let j = jc - radius; j < jc + radius; j++) { if (world.chunkMap.has(i, j)) { continue; } const chunk = makeChunk(i * 16, j * 16); world.chunks.push(chunk); world.chunkMap.set(i, j, chunk); invalidateChunkGeometry(world, i - 1, j); invalidateChunkGeometry(world, i + 1, j); invalidateChunkGeometry(world, i, j - 1); invalidateChunkGeometry(world, i, j + 1); if (radius > 2 && performance.now() - start > timeLimit) { return; } } } } return world; } function invalidateChunkGeometry(world, i, j) { const chunk = world.chunkMap.get(i, j); if (chunk === undefined) { return; } if (chunk.faces === undefined) { return; } delete chunk.faces; if (chunk.buffer === undefined) { return; } chunk.buffer.delete(); delete chunk.buffer; } function addFace(chunk, block, dir) { const face = createChunkFace(block, dir); if (isTransparent(block.type)) { chunk.transparentFaces.push(face); } else { chunk.faces.push(face); } } export function createChunkFace(block, dir, center = null) { center = center ?? faceCenter(block.centerPosition, dir); if (block.type === BlockType.WATER && dir === '+y') { center[1] -= 0.15; } return { dir, blockIndex: block.blockIndex, face: makeFace(dir, faceTexture(block.type, dir), faceCenter(block.centerPosition, dir)), }; } /** Generates geometry for all visible chunks. */ export function updateWorldGeometry(gl, world, z, x, timeLimit = 10000) { const ic = Math.floor(z / 16); const jc = Math.floor(x / 16); const start = performance.now(); // k. Now, generate buffers for all chunks for (let radius = 1; radius < 8; radius++) { for (let i = ic - radius; i < ic + radius; i++) { for (let j = jc - radius; j < jc + radius; j++) { const chunk = world.chunkMap.get(i, j); if (chunk === undefined || chunk.buffer !== undefined) { continue; } if(chunk.faces === undefined) { const chunkz = 16 * i; const chunkx = 16 * j; const lookup = (i, j, k) => blockLookup(world, j + chunkx, k, i + chunkz).type; const faces = makeFaceList(chunk.data, chunk.position.z, chunk.position.x, lookup); chunk.faces = faces.solidFaces; chunk.transparentFaces = faces.transparentFaces; } chunk.buffer = makeBufferFromFaces(gl, chunk.faces.map(f => f.face)); chunk.transparentBuffer = makeBufferFromFaces(gl, chunk.transparentFaces.map(f => f.face)); // throttle this for fluidity if (radius > 2 && performance.now() - start > timeLimit) { return; } } } } } export function checkCollision(curPos, newPos, world) { // I guess Gontrand is about 1.7 m tall? // he also has a 60x60 cm axis-aligned square section '^_^ // box is centered around the camera const gontrandBB = [ [-0.3, 0.2, -0.3], [-0.3, 0.2, 0.3], [0.3, 0.2, -0.3], [0.3, 0.2, 0.3], [-0.3, -1.5, -0.3], [-0.3, -1.5, 0.3], [0.3, -1.5, -0.3], [0.3, -1.5, 0.3], ]; const translate = (v, pos) => v.map((el, i) => el + pos[i]); let dp = newPos.map((x, i) => x - curPos[i]); let isOnGround = false; for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => i === j ? x + newPos[j] : x + curPos[j]); for (const point of gontrandBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { if (i === 1 && dp[i] < 0) { isOnGround = true; } dp[i] = 0; } } } for (let i = 0; i < 3; i++) { const newSteve = v => v.map((x, j) => curPos[j] + x + dp[j]); for (const point of gontrandBB.map(newSteve)) { const block = blockLookup(world, ...point); if (block.type !== BlockType.AIR) { dp[i] = 0; } } } return { newPos: translate(curPos, dp), isOnGround, }; } function minIndex(arr) { return arr.reduce((min, val, i) => val >= arr[min] ? min : i, -1); } function movePoint(p, s, u) { return [p[0] + s * u[0], p[1] + s * u[1], p[2] + s * u[2]]; } function rayThroughGrid(origin, direction, maxDistance) { const range = i => [...Array(i).keys()]; const nextGrid = range(3).map(i => direction[i] > 0 ? Math.floor(origin[i] + 0.5) + 0.5 : Math.floor(origin[i] + 0.499) - 0.5); const distanceToGrid = range(3).map(i => (nextGrid[i] - origin[i]) / direction[i]) .map(v => v === 0.0 ? Number.POSITIVE_INFINITY : v); const axis = minIndex(distanceToGrid); const rayLength = distanceToGrid[axis]; if (rayLength > maxDistance) { return {}; } const position = movePoint(origin, distanceToGrid[axis], direction); const normal = range(3).map(i => i === axis ? -Math.sign(direction[i]) : 0); return {position, normal, distance: rayLength}; } export function castRay(world, origin, direction, maxDistance) { let currentPoint = origin; while (maxDistance > 0) { const {position, normal, distance} = rayThroughGrid(currentPoint, direction, maxDistance); if (position === undefined) { return; } maxDistance -= distance; currentPoint = position; const blockCenter = movePoint(position, -0.5, normal); const block = blockLookup(world, ...blockCenter); if (block.type === BlockType.AIR) { continue; } return { block, normal, }; } } export function markBlock(world, cameraPosition, direction, maxDistance) { const hit = castRay(world, cameraPosition, direction, maxDistance); if (hit === undefined || hit.block.type === BlockType.UNDEFINED) { return; } const texture = [0, 14]; const {normal, block} = hit; const faceCenter = movePoint(block.centerPosition, 0.51, normal); if (normal[0] > 0) { return makeFace('+x', texture, faceCenter); } else if (normal[0] < 0) { return makeFace('-x', texture, faceCenter); } else if (normal[1] > 0) { return makeFace('+y', texture, faceCenter); } else if (normal[1] < 0) { return makeFace('-y', texture, faceCenter); } else if (normal[2] > 0) { return makeFace('+z', texture, faceCenter); } else if (normal[2] < 0) { return makeFace('-z', texture, faceCenter); } } export function destroyBlock(world, block) { const trimFaces = chunk => { chunk.faces = chunk.faces.filter(({blockIndex}) => chunk.data[blockIndex] !== BlockType.AIR); chunk.transparentFaces = chunk.transparentFaces.filter(({blockIndex}) => chunk.data[blockIndex] !== BlockType.AIR); } block.chunk.data[block.blockIndex] = BlockType.AIR; if (block.chunk.buffer !== undefined) { block.chunk.buffer.delete(); delete block.chunk.buffer; } trimFaces(block.chunk); const [bx, by, bz] = block.centerPosition; const neighbors = [ { block: blockLookup(world, bx - 1, by, bz), dir: '+x' }, { block: blockLookup(world, bx + 1, by, bz), dir: '-x' }, { block: blockLookup(world, bx, by - 1, bz), dir: '+y' }, { block: blockLookup(world, bx, by + 1, bz), dir: '-y' }, { block: blockLookup(world, bx, by, bz - 1), dir: '+z' }, { block: blockLookup(world, bx, by, bz + 1), dir: '-z' }, ]; neighbors .filter(({ block }) => block.type !== BlockType.AIR && block.type !== BlockType.UNDEFINED) .forEach(({ block, dir }) => { addFace(block.chunk, block, dir); trimFaces(block.chunk); if (block.chunk.buffer !== undefined) { block.chunk.buffer.delete(); delete block.chunk.buffer; } }); } export function makeBlock(world, position, type) { const block = blockLookup(world, ...position); console.assert(block.type === BlockType.AIR); block.chunk.data[block.blockIndex] = type; block.type = type; const [bx, by, bz] = block.centerPosition; const neighbors = [ { block: blockLookup(world, bx - 1, by, bz), dir: '-x', ndir: '+x' }, { block: blockLookup(world, bx + 1, by, bz), dir: '+x', ndir: '-x' }, { block: blockLookup(world, bx, by - 1, bz), dir: '-y', ndir: '+y' }, { block: blockLookup(world, bx, by + 1, bz), dir: '+y', ndir: '-y' }, { block: blockLookup(world, bx, by, bz - 1), dir: '-z', ndir: '+z' }, { block: blockLookup(world, bx, by, bz + 1), dir: '+z', ndir: '-z' }, ]; const refresh = chunk => { if (chunk.buffer !== undefined) { chunk.buffer.delete(); delete chunk.buffer; } } neighbors .filter(({ block }) => block.type !== BlockType.UNDEFINED) .forEach(({ block: nblock, dir, ndir }) => { if (nblock.type === BlockType.AIR || nblock.type === BlockType.WATER) { addFace(block.chunk, block, dir); }// else { nblock.chunk.faces = nblock.chunk.faces.filter(f => ( f.blockIndex !== nblock.blockIndex || f.dir !== ndir )); refresh(nblock.chunk); //} }); refresh(block.chunk); } export async function initWorldGl(gl) { const program = makeProgram(gl, VSHADER, FSHADER); const texture = await loadTexture(gl, 'texture.png'); // load those ahead of time const viewLoc = gl.getUniformLocation(program, 'uView'); const modelLoc = gl.getUniformLocation(program, 'uModel'); const projLoc = gl.getUniformLocation(program, 'uProjection'); const samplerLoc = gl.getUniformLocation(program, 'uSampler'); const fogColorLoc = gl.getUniformLocation(program, 'uFogColor'); const lightDirectionLoc = gl.getUniformLocation(program, 'uLightDirection'); const ambiantLoc = gl.getUniformLocation(program, 'uAmbiantLight'); const positionLoc = gl.getAttribLocation(program, 'aPosition'); const normalLoc = gl.getAttribLocation(program, 'aNormal'); const textureLoc = gl.getAttribLocation(program, 'aTextureCoord'); const setupScene = (sceneParams) => { const { projectionMatrix, viewMatrix, fogColor, lightDirection, ambiantLightAmount, } = sceneParams; gl.useProgram(program); gl.uniformMatrix4fv(projLoc, false, new Float32Array(projectionMatrix)); gl.uniformMatrix4fv(viewLoc, false, new Float32Array(viewMatrix)); gl.uniform3fv(fogColorLoc, fogColor); gl.uniform3fv(lightDirectionLoc, lightDirection); gl.uniform1f(ambiantLoc, ambiantLightAmount); // doing this here because it's the same for all world stuff gl.uniformMatrix4fv(modelLoc, false, new Float32Array(se3.identity())); gl.uniform1i(samplerLoc, 0); gl.enableVertexAttribArray(positionLoc); gl.enableVertexAttribArray(normalLoc); gl.enableVertexAttribArray(textureLoc); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_2D, texture); }; const drawObject = (objectParams) => { const { glBuffer, numVertices, } = objectParams; gl.bindBuffer(gl.ARRAY_BUFFER, glBuffer); gl.vertexAttribPointer(positionLoc, 3, gl.FLOAT, false, 20, 0); gl.vertexAttribPointer(normalLoc, 3, gl.BYTE, true, 20, 12); gl.vertexAttribPointer(textureLoc, 2, gl.UNSIGNED_SHORT, true, 20, 16); gl.drawArrays(gl.TRIANGLES, 0, numVertices); }; return { setupScene, drawObject, }; }