skycraft: refactor & move to TS

This commit is contained in:
Paul Mathieu 2022-11-09 17:27:45 -08:00
parent 7354dcb929
commit 925550308f
8 changed files with 656 additions and 627 deletions

313
skycraft/chunk.ts Normal file
View File

@ -0,0 +1,313 @@
import { makeFace } from '../geometry';
import * as linalg from './linalg';
import {memoize} from '../memoize';
type direction = ('-x' | '+x' | '-y' | '+y' | '-z' | '+z');
const BlockType = {
UNDEFINED: 0,
AIR: 1,
DIRT: 2,
GRASS: 3,
STONE: 4,
WATER: 5,
TREE: 6,
LEAVES: 7,
SUN: 8,
};
const CHUNKSIZE = 32;
/** seed: some kind of number uniquely defining the body
* x, y, z: space coordinates in the body's frame
*
* returns: a chunk
*/
function makeDirtBlock(seed: number) {
// XXX: for now, return a premade chunk: a 24x24x24 cube of dirt
// surrounded by 4 blocks of air all around
const cs = CHUNKSIZE;
if (seed !== 1337) {
return {};
}
// if (Math.abs
const blocks = new Array(cs * cs * cs);
blocks.fill(BlockType.AIR);
const dirt = new Array(24).fill(BlockType.DIRT);
for (let i = 0; i < 24; i++) {
for (let j = 4; j < 28; j++) {
const offset = cs * cs * (i + 4) + cs * j;
blocks.splice(offset + 4, 24, ...dirt);
}
}
const half = cs / 2;
return {
position: [-half, -half, -half],
blocks,
underground: false,
seed,
};
}
function makeSunChunk(seed: number, i: number, j: number, k: number) {
const cs = CHUNKSIZE;
const radius = 42;
if (Math.abs(cs * i) > radius
|| Math.abs(cs * j) > radius
|| Math.abs(cs * k) > radius) {
return undefined;
}
const half = cs / 2;
const blocks = new Array(cs**3);
blocks.fill(BlockType.SUN);
let underground = true;
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const pos = [
x + i * cs - half,
y + j * cs - half,
z + k * cs - half,
];
const idx = (
z * cs * cs +
y * cs +
x
);
if (pos[0]**2 + pos[1]**2 + pos[2]**2 > radius**2) {
blocks[idx] = BlockType.AIR;
underground = false;
}
}
}
}
return {
position: [i * cs - half, j * cs - half, k * cs - half],
layout: [i, j, k],
blocks,
seed,
underground,
};
}
function _getChunk(seed: number, chunkX: number, chunkY: number, chunkZ: number) {
if (seed === 0) {
return makeSunChunk(seed, chunkX, chunkY, chunkZ);
}
if (chunkX === 0 && chunkY === 0 && chunkZ === 0) {
return makeDirtBlock(seed); // x, y, z unused right now
}
return undefined;
}
const getChunk = memoize(_getChunk);
function faceTexture(type: number, dir: direction) {
switch (type) {
case BlockType.GRASS:
switch (dir) {
case '+y': return [0, 15];
case '-y': return [2, 15];
default: return [1, 15];
}
case BlockType.DIRT: return [2, 15];
case BlockType.STONE: return [3, 15];
case BlockType.WATER: return [4, 15];
case BlockType.TREE:
switch (dir) {
case '+y':
case '-y':
return [5, 15];
default: return [6, 15];
}
case BlockType.LEAVES: return [7, 15];
case BlockType.SUN: return [0, 4];
default: return [0, 0];
}
}
function* makeChunkFaces(chunk) {
const cs = CHUNKSIZE;
function faceCenter(pos: linalg.vec3, dir: direction) {
switch (dir) {
case '-x': return [pos[0] - 0.5, pos[1], pos[2]];
case '+x': return [pos[0] + 0.5, pos[1], pos[2]];
case '-y': return [pos[0], pos[1] - 0.5, pos[2]];
case '+y': return [pos[0], pos[1] + 0.5, pos[2]];
case '-z': return [pos[0], pos[1], pos[2] - 0.5];
case '+z': return [pos[0], pos[1], pos[2] + 0.5];
}
}
function neighborChunk(dir: direction) {
const [chunkX, chunkY, chunkZ] = chunk.layout;
if (chunk.neighbors === undefined) {
chunk.neighbors = {};
}
if (!(dir in chunk.neighbors)) {
switch (dir) {
case '-x':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX - 1, chunkY, chunkZ);
break;
case '+x':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX + 1, chunkY, chunkZ);
break;
case '-y':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY - 1, chunkZ);
break;
case '+y':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY + 1, chunkZ);
break;
case '-z':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ - 1);
break;
case '+z':
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ + 1);
break;
}
}
return chunk.neighbors[dir];
}
const neighborIndices = {
'-x': (x, y, z) => z * cs * cs + y * cs + (cs - 1),
'+x': (x, y, z) => z * cs * cs + y * cs + 0,
'-y': (x, y, z) => z * cs * cs + (cs - 1) * cs + x,
'+y': (x, y, z) => z * cs * cs + 0 * cs + x,
'-z': (x, y, z) => (cs - 1) * cs * cs + y * cs + x,
'+z': (x, y, z) => 0 * cs * cs + y * cs + x,
};
function neighborBlock(dir: direction, x, y, z) {
const neighbor = neighborChunk(dir);
let block;
if (neighbor === undefined) {
block = BlockType.AIR;
} else {
block = neighbor.blocks[neighborIndices[dir](x, y, z)];
}
return { dir, block };
}
function* neighbors(x, y, z) {
const idx = (
z * cs * cs +
y * cs +
x
);
if (x > 0) {
yield {
block: chunk.blocks[idx - 1],
dir: '-x',
};
} else {
yield neighborBlock('-x', x, y, z);
}
if (x < cs - 1) {
yield {
block: chunk.blocks[idx + 1],
dir: '+x',
};
} else {
yield neighborBlock('+x', x, y, z);
}
if (y > 0) {
yield {
block: chunk.blocks[idx - cs],
dir: '-y',
};
} else {
yield neighborBlock('-y', x, y, z);
}
if (y < cs - 1) {
yield {
block: chunk.blocks[idx + cs],
dir: '+y',
};
} else {
yield neighborBlock('+y', x, y, z);
}
if (z > 0) {
yield {
block: chunk.blocks[idx - cs * cs],
dir: '-z',
};
} else {
yield neighborBlock('-z', x, y, z);
}
if (z < cs - 1) {
yield {
block: chunk.blocks[idx + cs * cs],
dir: '+z',
};
} else {
yield neighborBlock('+z', x, y, z);
}
}
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const idx = (
z * cs * cs +
y * cs +
x
);
const chpos = chunk.position;
const bkpos = [
chpos[0] + x,
chpos[1] + y,
chpos[2] + z,
];
const bt = chunk.blocks[idx];
if (bt === BlockType.AIR) {
continue;
}
for (const { block, dir } of neighbors(x, y, z)) {
if (block !== BlockType.AIR) {
continue;
}
yield makeFace(dir, faceTexture(bt, dir), faceCenter(bkpos, dir));
}
}
}
}
}
function getBodyChunks(seed: number) {
const chunks = [];
const toCheck = [[0, 0, 0]];
while (toCheck.length > 0) {
const [chunkX, chunkY, chunkZ] = toCheck.pop();
const thisChunk = getChunk(seed, chunkX, chunkY, chunkZ);
if (thisChunk === undefined || chunks.includes(thisChunk)) {
continue;
}
chunks.push(thisChunk);
toCheck.push([chunkX - 1, chunkY, chunkZ]);
toCheck.push([chunkX + 1, chunkY, chunkZ]);
toCheck.push([chunkX, chunkY - 1, chunkZ]);
toCheck.push([chunkX, chunkY + 1, chunkZ]);
toCheck.push([chunkX, chunkY, chunkZ - 1]);
toCheck.push([chunkX, chunkY, chunkZ + 1]);
}
return chunks;
}
export function getBodyGeometry(seed: number) {
const faces = getBodyChunks(seed)
.filter(chunk => !chunk.underground)
.map(chunk => [...makeChunkFaces(chunk)]);
return faces.reduce((a, b) => a.concat(b));
}

View File

@ -1,12 +1,10 @@
//import { initUiListeners, setupParamPanel, tick } from './game';
//import { initWorldGl, makeWorld } from './world';
import * as se3 from '../se3';
import {loadTexture, makeProgram} from '../gl';
import { makeFace, makeBufferFromFaces } from '../geometry'; import { makeFace, makeBufferFromFaces } from '../geometry';
import { loadStlModel } from './stl'; import { loadTexture, makeProgram } from '../gl';
import * as linalg from './linalg'; import * as linalg from './linalg';
import { memoize } from '../memoize';
import { loadObjModel } from './obj'; import { loadObjModel } from './obj';
import * as se3 from '../se3';
import { computeOrbit, findSoi, getCartesianState, makeOrbitObject, updateBodyPhysics } from './orbit';
import { getBodyGeometry } from './chunk';
const VSHADER = ` const VSHADER = `
attribute vec3 aPosition; attribute vec3 aPosition;
@ -80,7 +78,7 @@ void main() {
const kEpoch = 0; const kEpoch = 0;
async function initWorldGl(gl) { async function initWorldGl(gl: WebGLRenderingContext) {
const program = makeProgram(gl, VSHADER, FSHADER); const program = makeProgram(gl, VSHADER, FSHADER);
const texture = await loadTexture(gl, 'texture.png'); const texture = await loadTexture(gl, 'texture.png');
@ -243,298 +241,6 @@ function getOrbitDrawContext(gl) {
}; };
} }
const BlockType = {
UNDEFINED: 0,
AIR: 1,
DIRT: 2,
GRASS: 3,
STONE: 4,
WATER: 5,
TREE: 6,
LEAVES: 7,
SUN: 8,
};
const CHUNKSIZE = 32;
/** seed: some kind of number uniquely defining the body
* x, y, z: space coordinates in the body's frame
*
* returns: a chunk
*/
function makeDirtBlock(seed, x, y, z) {
// XXX: for now, return a premade chunk: a 24x24x24 cube of dirt
// surrounded by 4 blocks of air all around
const cs = CHUNKSIZE;
if (seed !== 1337) {
return {};
}
// if (Math.abs
const blocks = new Array(cs * cs * cs);
blocks.fill(BlockType.AIR);
const dirt = new Array(24).fill(BlockType.DIRT);
for (let i = 0; i < 24; i++) {
for (let j = 4; j < 28; j++) {
const offset = cs * cs * (i + 4) + cs * j;
blocks.splice(offset + 4, 24, ...dirt);
}
}
const half = cs / 2;
return {
position: [-half, -half, -half],
blocks,
underground: false,
seed,
};
}
function makeSunChunk(seed, i, j, k) {
const cs = CHUNKSIZE;
const radius = 42;
if (Math.abs(cs * i) > radius
|| Math.abs(cs * j) > radius
|| Math.abs(cs * k) > radius) {
return undefined;
}
const half = cs / 2;
const blocks = new Array(cs**3);
blocks.fill(BlockType.SUN);
let underground = true;
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const pos = [
x + i * cs - half,
y + j * cs - half,
z + k * cs - half,
];
const idx = (
z * cs * cs +
y * cs +
x
);
if (pos[0]**2 + pos[1]**2 + pos[2]**2 > radius**2) {
blocks[idx] = BlockType.AIR;
underground = false;
}
}
}
}
return {
position: [i * cs - half, j * cs - half, k * cs - half],
layout: [i, j, k],
blocks,
seed,
underground,
};
}
function _getChunk(seed, chunkX, chunkY, chunkZ) {
if (seed === 0) {
return makeSunChunk(seed, chunkX, chunkY, chunkZ);
}
if (chunkX === 0 && chunkY === 0 && chunkZ === 0) {
return makeDirtBlock(seed); // x, y, z unused right now
}
return undefined;
}
const getChunk = memoize(_getChunk);
function getBodyChunks(seed) {
const chunks = [];
const toCheck = [[0, 0, 0]];
while (toCheck.length > 0) {
const [chunkX, chunkY, chunkZ] = toCheck.pop();
const thisChunk = getChunk(seed, chunkX, chunkY, chunkZ);
if (thisChunk === undefined || chunks.includes(thisChunk)) {
continue;
}
chunks.push(thisChunk);
toCheck.push([chunkX - 1, chunkY, chunkZ]);
toCheck.push([chunkX + 1, chunkY, chunkZ]);
toCheck.push([chunkX, chunkY - 1, chunkZ]);
toCheck.push([chunkX, chunkY + 1, chunkZ]);
toCheck.push([chunkX, chunkY, chunkZ - 1]);
toCheck.push([chunkX, chunkY, chunkZ + 1]);
}
return chunks;
}
function faceTexture(type, dir) {
switch (type) {
case BlockType.GRASS:
switch (dir) {
case '+y': return [0, 15];
case '-y': return [2, 15];
default: return [1, 15];
}
case BlockType.DIRT: return [2, 15];
case BlockType.STONE: return [3, 15];
case BlockType.WATER: return [4, 15];
case BlockType.TREE:
switch (dir) {
case '+y':
case '-y':
return [5, 15];
default: return [6, 15];
}
case BlockType.LEAVES: return [7, 15];
case BlockType.SUN: return [0, 4];
default: return [0, 0];
}
}
function* makeChunkFaces(chunk) {
const cs = CHUNKSIZE;
function faceCenter(pos, dir) {
switch (dir) {
case '-x': return [pos[0] - 0.5, pos[1], pos[2]];
case '+x': return [pos[0] + 0.5, pos[1], pos[2]];
case '-y': return [pos[0], pos[1] - 0.5, pos[2]];
case '+y': return [pos[0], pos[1] + 0.5, pos[2]];
case '-z': return [pos[0], pos[1], pos[2] - 0.5];
case '+z': return [pos[0], pos[1], pos[2] + 0.5];
}
}
function neighborChunk(dir) {
const [chunkX, chunkY, chunkZ] = chunk.layout;
if (chunk.neighbors === undefined) {
chunk.neighbors = {};
}
if (!(dir in chunk.neighbors)) {
if (dir === '-x') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX - 1, chunkY, chunkZ);
} else if (dir === '+x') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX + 1, chunkY, chunkZ);
} else if (dir === '-y') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY - 1, chunkZ);
} else if (dir === '+y') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY + 1, chunkZ);
} else if (dir === '-z') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ - 1);
} else if (dir === '+z') {
chunk.neighbors[dir] = getChunk(chunk.seed, chunkX, chunkY, chunkZ + 1);
}
}
return chunk.neighbors[dir];
}
const neighborIndices = {
'-x': (x, y, z) => z * cs * cs + y * cs + (cs - 1),
'+x': (x, y, z) => z * cs * cs + y * cs + 0,
'-y': (x, y, z) => z * cs * cs + (cs - 1) * cs + x,
'+y': (x, y, z) => z * cs * cs + 0 * cs + x,
'-z': (x, y, z) => (cs - 1) * cs * cs + y * cs + x,
'+z': (x, y, z) => 0 * cs * cs + y * cs + x,
};
function neighborBlock(dir, x, y, z) {
const neighbor = neighborChunk(dir);
let block;
if (neighbor === undefined) {
block = BlockType.AIR;
} else {
block = neighbor.blocks[neighborIndices[dir](x, y, z)];
}
return { dir, block };
}
function* neighbors(x, y, z) {
const idx = (
z * cs * cs +
y * cs +
x
);
if (x > 0) {
yield {
block: chunk.blocks[idx - 1],
dir: '-x',
};
} else {
yield neighborBlock('-x', x, y, z);
}
if (x < cs - 1) {
yield {
block: chunk.blocks[idx + 1],
dir: '+x',
};
} else {
yield neighborBlock('+x', x, y, z);
}
if (y > 0) {
yield {
block: chunk.blocks[idx - cs],
dir: '-y',
};
} else {
yield neighborBlock('-y', x, y, z);
}
if (y < cs - 1) {
yield {
block: chunk.blocks[idx + cs],
dir: '+y',
};
} else {
yield neighborBlock('+y', x, y, z);
}
if (z > 0) {
yield {
block: chunk.blocks[idx - cs * cs],
dir: '-z',
};
} else {
yield neighborBlock('-z', x, y, z);
}
if (z < cs - 1) {
yield {
block: chunk.blocks[idx + cs * cs],
dir: '+z',
};
} else {
yield neighborBlock('+z', x, y, z);
}
}
for (let x = 0; x < cs; x++) {
for (let y = 0; y < cs; y++) {
for (let z = 0; z < cs; z++) {
const idx = (
z * cs * cs +
y * cs +
x
);
const chpos = chunk.position;
const bkpos = [
chpos[0] + x,
chpos[1] + y,
chpos[2] + z,
];
const bt = chunk.blocks[idx];
if (bt === BlockType.AIR) {
continue;
}
for (const {block, dir} of neighbors(x, y, z)) {
if (block !== BlockType.AIR) {
continue;
}
yield makeFace(dir, faceTexture(bt), faceCenter(bkpos, dir));
}
}
}
}
}
function closeToPlanet(context) { function closeToPlanet(context) {
const body = findSoi(context); const body = findSoi(context);
const relativePos = linalg.diff(context.player.position, body.position); const relativePos = linalg.diff(context.player.position, body.position);
@ -542,15 +248,7 @@ function closeToPlanet(context) {
return linalg.norm(relativePos) < 20; return linalg.norm(relativePos) < 20;
} }
function getBodyGeometry(seed) { function getSolarSystem(seed: number) {
const faces = getBodyChunks(seed)
.filter(chunk => !chunk.underground)
.map(chunk => [...makeChunkFaces(chunk)]);
return faces.reduce((a, b) => a.concat(b));
}
function getSolarSystem(seed) {
/// XXX: only returns 1 body for now /// XXX: only returns 1 body for now
return { return {
@ -663,7 +361,7 @@ function getSolarSystem(seed) {
}; };
} }
function initUiListeners(canvas, context) { function initUiListeners(canvas: HTMLCanvasElement, context) {
const canvasClickHandler = () => { const canvasClickHandler = () => {
canvas.requestPointerLock(); canvas.requestPointerLock();
canvas.onclick = null; canvas.onclick = null;
@ -745,7 +443,7 @@ function initUiListeners(canvas, context) {
} }
function handleInput(context) { function handleInput(context) {
const move = (forward, right) => { const move = (forward: number, right: number) => {
if (context.keys.has('ShiftLeft')) { if (context.keys.has('ShiftLeft')) {
forward *= 10; forward *= 10;
right *= 10; right *= 10;
@ -792,138 +490,7 @@ function handleInput(context) {
}); });
} }
function updateBodyPhysics(time, body, parentBody) { function updatePhysics(time: number, context) {
if (parentBody !== undefined) {
const mu = parentBody.mass;
const {position, velocity} = getCartesianState(body.orbit, mu, time);
body.position = [
parentBody.position[0] + position[0],
parentBody.position[1] + position[1],
parentBody.position[2] + position[2],
];
body.velocity = [
parentBody.velocity[0] + velocity[0],
parentBody.velocity[1] + velocity[1],
parentBody.velocity[2] + velocity[2],
];
} else {
body.position = [0, 0, 0];
body.velocity = [0, 0, 0];
}
body.orientation = getOrientation(body, time);
if (body.children !== undefined) {
for (const child of body.children) {
updateBodyPhysics(time, child, body);
}
}
}
function findSoi(context) {
const bodies = [context.universe];
let body;
while (bodies.length > 0) {
body = bodies.shift();
if (body.children === undefined) {
return body;
}
for (const child of body.children) {
const soi = child.orbit.semimajorAxis * Math.pow(child.mass / body.mass, 2/5);
const pos = context.player.position;
const bod = child.position;
const dr = [pos[0] - bod[0], pos[1] - bod[1], pos[2] - bod[2]];
if (dr[0]**2 + dr[1]**2 + dr[2]**2 < soi**2) {
bodies.push(child);
}
}
}
return body;
}
function computeOrbit(player, body, time) {
const {cross, diff, norm, dot, scale} = linalg;
const rvec = diff(player.position, body.position);
const r = norm(rvec);
if (norm(player.velocity) < 1e-6) {
// cheating
console.log('cheating');
player.velocity = scale(cross([1, 1, 1], rvec), 0.01/(r**2));
}
const vvec = diff(player.velocity, body.velocity);
const v = norm(vvec);
const Hvec = cross(rvec, vvec);
const H = norm(Hvec);
const mu = body.mass;
const p = H**2 / mu;
const resinnu = Math.sqrt(p/mu) * dot(vvec, rvec)
const recosnu = p - r;
const e = Math.sqrt(resinnu**2 + recosnu**2) / r;
// should also work for hyperbolic orbits
const a = p/(1-e**2);
const x = scale(rvec, 1/r);
const yy = cross(Hvec, rvec);
const y = scale(yy, 1/norm(yy));
const z = scale(Hvec, 1/H);
// Om i and w can be skipped when we just give tf...
let Om = Math.atan2(Hvec[0], -Hvec[1]);
if (Hvec[0] === 0 && Hvec[1] === 0) {
Om = 0;
}
let i = Math.atan2(Math.sqrt(Hvec[0]**2 + Hvec[1]**2), Hvec[2]);
if (i * Math.sign((Hvec[0] || 1) * Math.sin(Om)) < 0) {
i *= -1;
}
const nu = Math.atan2(resinnu, recosnu);
let w = Math.atan2(rvec[2] / r / Math.sin(i), y[2] / Math.sin(i)) || 0 - nu;
let t0;
let E;
if (a < 0) {
E = 2 * Math.atanh(Math.sqrt((e-1)/(e+1)) * Math.tan(nu/2));
const n = Math.sqrt(-mu / (a**3));
t0 = time - (e*Math.sinh(E) - E) / n;
} else {
E = 2 * Math.atan(Math.sqrt((1-e)/(1+e)) * Math.tan(nu/2));
const n = Math.sqrt(mu / (a**3));
t0 = time - (1/n)*(E - e*Math.sin(E));
}
// column-major... see se3.js
const tf = se3.product([
x[0], x[1], x[2], 0,
y[0], y[1], y[2], 0,
z[0], z[1], z[2], 0,
0, 0, 0, 1,
], se3.rotz(-nu));
const orbit = {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
tf,
lastE: E,
};
return orbit;
}
function updatePhysics(time, context) {
const {player} = context; const {player} = context;
const dt = time - (context.lastTime || 0); const dt = time - (context.lastTime || 0);
context.lastTime = time; context.lastTime = time;
@ -938,7 +505,7 @@ function updatePhysics(time, context) {
const dx = linalg.diff(newPos, player.position); const dx = linalg.diff(newPos, player.position);
player.tf = se3.product(se3.translation(...dx), player.tf); player.tf = se3.product(se3.translation(...dx), player.tf);
const body = findSoi(context); const body = findSoi(context.universe, context.player.position);
context.orbit = computeOrbit(player, body, time); context.orbit = computeOrbit(player, body, time);
console.log(`orbiting ${body.name}, excentricity: ${context.orbit.excentricity}`); console.log(`orbiting ${body.name}, excentricity: ${context.orbit.excentricity}`);
context.orbitBody = body; context.orbitBody = body;
@ -964,139 +531,7 @@ function updatePhysics(time, context) {
function updateGeometry(context, timeout_ms = 10) { function updateGeometry(context, timeout_ms = 10) {
} }
function normalizeAngle(theta) { function getObjects(context, body, parentPosition = undefined) {
const twopi = 2 * Math.PI;
return theta - twopi * Math.floor((theta + Math.PI) / twopi);
}
/** Let's be honest I should clean this up.
*
* This is the part that solves Kepler's equation using Newton's method.
* For circular-ish orbits, one or two iterations are usually enough.
* More excentric orbits can take more (6 or 7?).
*
* For near-parabolic orbits (and some others?) it often fails to converge...
*/
function getCartesianState(orbit, mu, time) {
const {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
} = orbit;
let n = Math.sqrt(mu/(a**3));
if (a < 0) {
n = Math.sqrt(mu/-(a**3)); // mean motion
}
const M = n * (time - t0); // mean anomaly
// Newton's method
var E2 = 0;
var E = orbit.lastE || M;
let iterations = 0;
// a clever guess? https://link.springer.com/article/10.1023/A:1008200607490
// doesn't work at all.
while (Math.abs(E - E2) > 1e-10) {
if (e < 0.001) {
break;
}
E = E2;
if (e < 1) {
E2 = E - (E - e * Math.sin(E) - M) / (1 - e * Math.cos(E));
} else if (e > 1) {
E2 = E - (-E + e * Math.sinh(E) - M) / (e * Math.cosh(E) - 1);
} else {
E2 = E - (E + E*E*E/3 - M) / (1 + E*E);
}
iterations++;
if (iterations > 100) {
console.log('numerical instability');
return {};
}
}
orbit.lastE = E;
let nu;
if (e > 1) {
nu = 2 * Math.atan(Math.sqrt((e+1) / (e-1)) * Math.tanh(E/2));
} else {
nu = 2 * Math.atan(Math.sqrt((1+e) / (1-e)) * Math.tan(E/2));
}
const p = a * (1 - e**2);
const r = p / (1 + e * Math.cos(nu));// * ((a < 0) ? -1 : 1);
const rd = e * Math.sqrt(mu / p) * Math.sin(nu);
if (orbit.tf === undefined) {
// FIXME: this is actually borken. :/
orbit.tf = [se3.rotz(Om), se3.rotx(i), se3.rotz(w)].reduce(se3.product);
}
const tf = se3.product(orbit.tf, se3.rotz(nu));
const pos = se3.apply(tf, [r, 0, 0, 1]);
const vel = se3.apply(tf, [rd, Math.sqrt(p * mu) / r, 0, 1]);
return {
position: pos.slice(0, 3),
velocity: vel.slice(0, 3),
};
}
function getOrientation(body, time) {
return se3.rotxyz(
body.spin[0] * time,
body.spin[1] * time,
body.spin[2] * time,
);
}
function makeOrbitObject(context, orbit, parentPosition) {
const {gl} = context;
const position = parentPosition;
const glContext = context.orbitGlContext;
const orientation = orbit.tf;
// FIXME: currently borken.
// const orientation = [
// se3.rotz(orbit.ascendingNodeLongitude),
// se3.rotx(orbit.inclination),
// se3.rotz(orbit.periapsisArgument),
// ].reduce(se3.product);
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
const a = orbit.semimajorAxis;
const b = a * Math.sqrt(1 - orbit.excentricity**2);
const x = - orbit.semimajorAxis * orbit.excentricity;
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
x-a, -b, 0, -1, -1,
x-a, +b, 0, -1, +1,
x+a, -b, 0, +1, -1,
x+a, +b, 0, +1, +1,
]), gl.STATIC_DRAW);
const geometry = {
glBuffer: buffer,
numVertices: 4,
delete: () => gl.deleteBuffer(buffer),
};
return {
geometry,
orientation,
position,
glContext,
};
}
const kGravitationalConstant = 6.674e-11;
function getObjects(context, body, parentPosition) {
const objects = []; const objects = [];
const {gl, glContext, player} = context; const {gl, glContext, player} = context;
const {position, orientation, glowColor} = body; const {position, orientation, glowColor} = body;
@ -1113,7 +548,7 @@ function getObjects(context, body, parentPosition) {
glowColor, glowColor,
}); });
if (parentPosition !== undefined) { if (parentPosition !== undefined) {
const orbitObject = makeOrbitObject(context, body.orbit, parentPosition); const orbitObject = makeOrbitObject(gl, context.orbitGlContext, body.orbit, parentPosition);
objects.push(orbitObject); objects.push(orbitObject);
} else { } else {
const shipOrientation = [ const shipOrientation = [
@ -1139,18 +574,19 @@ function getObjects(context, body, parentPosition) {
return objects; return objects;
} }
function sunDirection(context, position) { function sunDirection(position: linalg.vec3) {
return linalg.scale(position, 1/linalg.norm(position)); return linalg.scale(position, 1/linalg.norm(position));
} }
function draw(context) { function draw(context) {
const {gl, camera, player, universe} = context; const {gl, camera, player, universe, orbit, orbitGlContext, orbitBody} = context;
const {skyColor, ambiantLight, projMatrix} = context;
const objects = getObjects(context, universe); const objects = getObjects(context, universe);
if (context.orbit !== undefined && context.orbit.excentricity < 1) { if (orbit !== undefined && orbit.excentricity < 1) {
objects.push(makeOrbitObject(context, context.orbit, context.orbitBody.position)); objects.push(makeOrbitObject(gl, orbitGlContext, orbit, orbitBody.position));
} }
gl.clearColor(...context.skyColor, 1.0); gl.clearColor(...skyColor, 1.0);
gl.clearDepth(1.0); gl.clearDepth(1.0);
gl.enable(gl.DEPTH_TEST); gl.enable(gl.DEPTH_TEST);
gl.depthFunc(gl.LEQUAL); gl.depthFunc(gl.LEQUAL);
@ -1163,9 +599,8 @@ function draw(context) {
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
const viewMatrix = se3.inverse([ const viewMatrix = se3.inverse([
context.player.tf, // player position & orientation player.tf, // player position & orientation
camera.tf, // camera orientation relative to player
context.camera.tf, // camera orientation relative to player
se3.translation(0, 1, 4), // step back from the player se3.translation(0, 1, 4), // step back from the player
].reduce(se3.product)); ].reduce(se3.product));
let lastGlContext; let lastGlContext;
@ -1173,14 +608,14 @@ function draw(context) {
for (const {position, orientation, geometry, glContext, glowColor} of objects) { for (const {position, orientation, geometry, glContext, glowColor} of objects) {
if (glContext !== lastGlContext) { if (glContext !== lastGlContext) {
glContext.setupScene({ glContext.setupScene({
projectionMatrix: context.projMatrix, projectionMatrix: projMatrix,
viewMatrix, viewMatrix,
ambiantLightAmount: context.ambiantLight, ambiantLightAmount: ambiantLight,
}); });
} }
lastGlContext = glContext; lastGlContext = glContext;
const lightDirection = sunDirection(context, position); const lightDirection = sunDirection(position);
glContext.drawObject({ glContext.drawObject({
position, position,
@ -1193,7 +628,7 @@ function draw(context) {
} }
} }
function tick(time, context) { function tick(time: number, context) {
handleInput(context); handleInput(context);
const simTime = time * 0.001 + context.timeOffset; const simTime = time * 0.001 + context.timeOffset;
updatePhysics(simTime, context); updatePhysics(simTime, context);
@ -1213,7 +648,7 @@ function tick(time, context) {
const dt = (time - context.lastFrameTime) * 0.001; const dt = (time - context.lastFrameTime) * 0.001;
context.lastFrameTime = time; context.lastFrameTime = time;
document.querySelector('#fps').textContent = `${1.0 / dt} fps`; document.querySelector('#fps')!.textContent = `${1.0 / dt} fps`;
requestAnimationFrame(time => tick(time, context)); requestAnimationFrame(time => tick(time, context));
} }
@ -1229,27 +664,8 @@ function makeCube(texture) {
]; ];
} }
function makeObjects(gl) {
const texture = [0, 4];
const faces = [
makeFace('-x', texture, [-0.5, 0, 0]),
makeFace('+x', texture, [+0.5, 0, 0]),
makeFace('-y', texture, [0, -0.5, 0]),
makeFace('+y', texture, [0, +0.5, 0]),
makeFace('-z', texture, [0, 0, -0.5]),
makeFace('+z', texture, [0, 0, +0.5]),
];
return [
{
geometry: makeBufferFromFaces(gl, faces),
orientation: [0, 0, 0],
position: [0, 0, 0],
},
];
}
async function main() { async function main() {
const canvas = document.querySelector('#game'); const canvas = document.querySelector('#game')! as HTMLCanvasElement;
// adjust canvas aspect ratio to that of the screen // adjust canvas aspect ratio to that of the screen
canvas.height = screen.height / screen.width * canvas.width; canvas.height = screen.height / screen.width * canvas.width;
const gl = canvas.getContext('webgl'); const gl = canvas.getContext('webgl');
@ -1291,7 +707,6 @@ async function main() {
isOnGround: false, isOnGround: false,
gravity: -17, gravity: -17,
jumpForce: 6.5, jumpForce: 6.5,
// objects: makeObjects(gl),
universe: getSolarSystem(0), universe: getSolarSystem(0),
timeOffset: 0, timeOffset: 0,
}; };
@ -1300,7 +715,6 @@ async function main() {
context.orbitGlContext = getOrbitDrawContext(gl); context.orbitGlContext = getOrbitDrawContext(gl);
initUiListeners(canvas, context); initUiListeners(canvas, context);
// setupParamPanel(context);
const starshipGeom = await modelPromise; const starshipGeom = await modelPromise;
console.log(`loaded ${starshipGeom.length} triangles`); console.log(`loaded ${starshipGeom.length} triangles`);

View File

@ -1,4 +1,6 @@
export function cross(a, b) { export type vec3 = [number, number, number];
export function cross(a: vec3, b: vec3) : vec3 {
return [ return [
a[1] * b[2] - a[2] * b[1], a[1] * b[2] - a[2] * b[1],
a[2] * b[0] - a[0] * b[2], a[2] * b[0] - a[0] * b[2],
@ -6,7 +8,7 @@ export function cross(a, b) {
]; ];
} }
export function diff(a, b) { export function diff(a: vec3, b: vec3) : vec3 {
return [ return [
a[0] - b[0], a[0] - b[0],
a[1] - b[1], a[1] - b[1],
@ -14,7 +16,7 @@ export function diff(a, b) {
]; ];
} }
export function add(a, b) { export function add(a: vec3, b: vec3) : vec3 {
return [ return [
a[0] + b[0], a[0] + b[0],
a[1] + b[1], a[1] + b[1],
@ -22,14 +24,14 @@ export function add(a, b) {
]; ];
} }
export function norm(a) { export function norm(a: vec3) : number {
return Math.sqrt(a[0] ** 2 + a[1] ** 2 + a[2] ** 2); return Math.sqrt(a[0] ** 2 + a[1] ** 2 + a[2] ** 2);
} }
export function dot(a, b) { export function dot(a: vec3, b: vec3) : number {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2]; return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
} }
export function scale(a, s) { export function scale(a: vec3, s: number) : vec3 {
return [ return [
a[0] * s, a[0] * s,
a[1] * s, a[1] * s,

View File

@ -1,4 +1,4 @@
function parseObjLine(line, obj) { function parseObjLine(line: string, obj: any) {
line = line.trim(); line = line.trim();
if (line[0] === '#' || line.length < 1) { if (line[0] === '#' || line.length < 1) {
return; return;
@ -7,7 +7,7 @@ function parseObjLine(line, obj) {
obj[elements[0]].push(elements.slice(1)); obj[elements[0]].push(elements.slice(1));
} }
function getFaces(obj) { function getFaces(obj: any) {
return obj.f.map(f => { return obj.f.map(f => {
const face = { const face = {
'vertices': [], 'vertices': [],
@ -29,9 +29,11 @@ function getFaces(obj) {
}); });
} }
export async function loadObjModel(url) { export async function loadObjModel(url: string) {
const stlDataStream = (await fetch(url)).body; const stlDataStream = (await fetch(url)).body;
const faces = []; if (stlDataStream === null) {
return Promise.reject(new Error(`Could not fetch ${url}`));
}
const obj = new Proxy({}, { const obj = new Proxy({}, {
get: (target, name) =>{ get: (target, name) =>{
if (!(name in target)) { if (!(name in target)) {

283
skycraft/orbit.ts Normal file
View File

@ -0,0 +1,283 @@
import * as se3 from '../se3';
import * as linalg from './linalg';
import {vec3} from './linalg';
type mat4 = number[];
type vec4 = [number, number, number, number];
interface Orbit {
excentricity: number,
semimajorAxis: number,
inclination: number,
ascendingNodeLongitude: number,
periapsisArgument: number,
t0: number,
lastE: number | undefined,
tf: number[] | undefined,
}
interface Body {
position: vec3,
velocity: vec3,
orientation: vec4,
children: Body[],
mass: number,
orbit: Orbit,
spin: vec3,
name: string,
}
export function updateBodyPhysics(time: number, body: Body, parentBody : Body | undefined = undefined) {
if (parentBody !== undefined) {
const mu = parentBody.mass;
const {position, velocity} = getCartesianState(body.orbit, mu, time);
body.position = [
parentBody.position[0] + position[0],
parentBody.position[1] + position[1],
parentBody.position[2] + position[2],
];
body.velocity = [
parentBody.velocity[0] + velocity[0],
parentBody.velocity[1] + velocity[1],
parentBody.velocity[2] + velocity[2],
];
} else {
body.position = [0, 0, 0];
body.velocity = [0, 0, 0];
}
body.orientation = getOrientation(body, time);
if (body.children !== undefined) {
for (const child of body.children) {
updateBodyPhysics(time, child, body);
}
}
}
export function findSoi(rootBody: Body, position: number[]) : Body {
const bodies = [rootBody];
let body : Body;
while (bodies.length > 0) {
body = bodies.shift()!;
if (body.children === undefined) {
return body;
}
for (const child of body.children) {
const soi = child.orbit.semimajorAxis * Math.pow(child.mass / body.mass, 2/5);
const pos = position;
const bod = child.position;
const dr = [pos[0] - bod[0], pos[1] - bod[1], pos[2] - bod[2]];
if (dr[0]**2 + dr[1]**2 + dr[2]**2 < soi**2) {
bodies.push(child);
}
}
}
return body!;
}
export function computeOrbit(player: any, body: Body, time: number) {
const {cross, diff, norm, dot, scale} = linalg;
const rvec = diff(player.position, body.position);
const r = norm(rvec);
if (norm(player.velocity) < 1e-6) {
// cheating
console.log('cheating');
player.velocity = scale(cross([1, 1, 1], rvec), 0.01/(r**2));
}
const vvec = diff(player.velocity, body.velocity);
const v = norm(vvec);
const Hvec = cross(rvec, vvec);
const H = norm(Hvec);
const mu = body.mass;
const p = H**2 / mu;
const resinnu = Math.sqrt(p/mu) * dot(vvec, rvec)
const recosnu = p - r;
const e = Math.sqrt(resinnu**2 + recosnu**2) / r;
// should also work for hyperbolic orbits
const a = p/(1-e**2);
const x = scale(rvec, 1/r);
const yy = cross(Hvec, rvec);
const y = scale(yy, 1/norm(yy));
const z = scale(Hvec, 1/H);
// Om i and w can be skipped when we just give tf...
let Om = Math.atan2(Hvec[0], -Hvec[1]);
if (Hvec[0] === 0 && Hvec[1] === 0) {
Om = 0;
}
let i = Math.atan2(Math.sqrt(Hvec[0]**2 + Hvec[1]**2), Hvec[2]);
if (i * Math.sign((Hvec[0] || 1) * Math.sin(Om)) < 0) {
i *= -1;
}
const nu = Math.atan2(resinnu, recosnu);
let w = Math.atan2(rvec[2] / r / Math.sin(i), y[2] / Math.sin(i)) || 0 - nu;
let t0;
let E;
if (a < 0) {
E = 2 * Math.atanh(Math.sqrt((e-1)/(e+1)) * Math.tan(nu/2));
const n = Math.sqrt(-mu / (a**3));
t0 = time - (e*Math.sinh(E) - E) / n;
} else {
E = 2 * Math.atan(Math.sqrt((1-e)/(1+e)) * Math.tan(nu/2));
const n = Math.sqrt(mu / (a**3));
t0 = time - (1/n)*(E - e*Math.sin(E));
}
// column-major... see se3.js
const tf = se3.product([
x[0], x[1], x[2], 0,
y[0], y[1], y[2], 0,
z[0], z[1], z[2], 0,
0, 0, 0, 1,
], se3.rotz(-nu));
const orbit = {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
tf,
lastE: E,
};
return orbit;
}
/** Let's be honest I should clean this up.
*
* This is the part that solves Kepler's equation using Newton's method.
* For circular-ish orbits, one or two iterations are usually enough.
* More excentric orbits can take more (6 or 7?).
*
* For near-parabolic orbits (and some others?) it often fails to converge...
*/
export function getCartesianState(orbit: Orbit, mu: number, time: number) {
const {
excentricity: e,
semimajorAxis: a,
inclination: i,
ascendingNodeLongitude: Om,
periapsisArgument: w,
t0,
} = orbit;
let n = Math.sqrt(mu/(a**3));
if (a < 0) {
n = Math.sqrt(mu/-(a**3)); // mean motion
}
const M = n * (time - t0); // mean anomaly
// Newton's method
var E2 = 0;
var E = orbit.lastE || M;
let iterations = 0;
// a clever guess? https://link.springer.com/article/10.1023/A:1008200607490
// doesn't work at all.
while (Math.abs(E - E2) > 1e-10) {
if (e < 0.001) {
break;
}
E = E2;
if (e < 1) {
E2 = E - (E - e * Math.sin(E) - M) / (1 - e * Math.cos(E));
} else if (e > 1) {
E2 = E - (-E + e * Math.sinh(E) - M) / (e * Math.cosh(E) - 1);
} else {
E2 = E - (E + E*E*E/3 - M) / (1 + E*E);
}
iterations++;
if (iterations > 100) {
console.log('numerical instability');
return {};
}
}
orbit.lastE = E;
let nu;
if (e > 1) {
nu = 2 * Math.atan(Math.sqrt((e+1) / (e-1)) * Math.tanh(E/2));
} else {
nu = 2 * Math.atan(Math.sqrt((1+e) / (1-e)) * Math.tan(E/2));
}
const p = a * (1 - e**2);
const r = p / (1 + e * Math.cos(nu));// * ((a < 0) ? -1 : 1);
const rd = e * Math.sqrt(mu / p) * Math.sin(nu);
if (orbit.tf === undefined) {
// FIXME: this is actually borken. :/
orbit.tf = [se3.rotz(Om), se3.rotx(i), se3.rotz(w)].reduce(se3.product);
}
const tf = se3.product(orbit.tf, se3.rotz(nu));
const pos = se3.apply(tf, [r, 0, 0, 1]);
const vel = se3.apply(tf, [rd, Math.sqrt(p * mu) / r, 0, 1]);
return {
position: pos.slice(0, 3),
velocity: vel.slice(0, 3),
};
}
function getOrientation(body: Body, time: number) {
return se3.rotxyz(
body.spin[0] * time,
body.spin[1] * time,
body.spin[2] * time,
);
}
export function makeOrbitObject(gl: WebGLRenderingContext, glContext: any, orbit: Orbit, parentPosition: number[]) {
const position = parentPosition;
// FIXME: currently borken.
// const orientation = [
// se3.rotz(orbit.ascendingNodeLongitude),
// se3.rotx(orbit.inclination),
// se3.rotz(orbit.periapsisArgument),
// ].reduce(se3.product);
const orientation = orbit.tf;
const buffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, buffer);
const a = orbit.semimajorAxis;
const b = a * Math.sqrt(1 - orbit.excentricity**2);
const x = - orbit.semimajorAxis * orbit.excentricity;
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array([
x-a, -b, 0, -1, -1,
x-a, +b, 0, -1, +1,
x+a, -b, 0, +1, -1,
x+a, +b, 0, +1, +1,
]), gl.STATIC_DRAW);
const geometry = {
glBuffer: buffer,
numVertices: 4,
delete: () => gl.deleteBuffer(buffer),
};
return {
geometry,
orientation,
position,
glContext,
};
}

View File

@ -1,14 +1,14 @@
{ {
"name": "skycraft", "name": "skycraft",
"version": "1.0.0", "version": "1.0.0",
"main": "index.js", "main": "index.ts",
"license": "MIT", "license": "MIT",
"dependencies": { "dependencies": {
"esbuild": "^0.14.2" "esbuild": "^0.14.2"
}, },
"scripts": { "scripts": {
"watch": "esbuild --outfile=app.js index.js --bundle --sourcemap=inline --watch", "watch": "esbuild --outfile=app.js index.ts --bundle --sourcemap=inline --watch",
"serve": "esbuild --outfile=app.js index.js --bundle --sourcemap=inline --servedir=.", "serve": "esbuild --outfile=app.js index.ts --bundle --sourcemap=inline --servedir=.",
"build": "esbuild --outfile=app.js index.js --bundle --minify" "build": "esbuild --outfile=app.js index.ts --bundle --minify"
} }
} }

15
skycraft/tsconfig.json Normal file
View File

@ -0,0 +1,15 @@
{
"compilerOptions": {
"target": "es6",
"module": "commonjs",
"lib": ["es2022", "dom"],
"declaration": true,
"outDir": "dist",
"strict": true,
"esModuleInterop": true
},
"exclude": [
"node_modules",
"dist"
]
}