synth/mbv/apps/async/uart.cc
2025-06-29 13:56:58 -07:00

166 lines
4.0 KiB
C++

#include "uart.h"
#include "async.h"
#include "gpio.h"
#include "lock.h"
#include "pol0.h"
#include "ring_buffer.h"
#include "trace.h"
#include "uart_async.h"
#include "xuartlite.h"
namespace {
using async::AwaitableType;
constexpr uintptr_t kUart0BaseAddress = UART0_BASE;
XUartLite uart0_inst;
XUartLite_Config uart0_config = {
.DeviceId = 0,
.RegBaseAddr = kUart0BaseAddress,
.BaudRate = 115200,
.UseParity = false,
.DataBits = 8,
};
constexpr size_t kUartRxBufferSize = 256;
std::array<std::byte, kUartRxBufferSize> rx_buffer = {};
RingBuffer rx_ring_buffer{.buffer = rx_buffer};
constexpr size_t kUartTxBufferSize = 256;
std::array<std::byte, kUartTxBufferSize> tx_buffer = {};
RingBuffer tx_ring_buffer{.buffer = tx_buffer};
XUartLite* uart0 = &uart0_inst;
volatile bool sending;
void StartReceiving() {
while (1) {
if (rx_ring_buffer.FreeSpace() < 1) {
// woops, full. discard some data
// TODO: keep track of overrun stats
rx_ring_buffer.Pop(1);
}
if (XUartLite_Recv(uart0, rx_ring_buffer.RawWritePointer(), 1) < 1) {
break;
}
rx_ring_buffer.Push(1);
}
}
void StartSending() {
if (sending) {
return;
}
size_t tosend = tx_ring_buffer.ContiguousAvailableData();
if (tosend < 1) {
return;
}
sending = true;
XUartLite_Send(uart0, tx_ring_buffer.RawReadPointer(), tosend);
}
} // namespace
void InitUarts() {
XUartLite_CfgInitialize(uart0, &uart0_config, uart0_config.RegBaseAddr);
XUartLite_SetSendHandler(uart0, HandleUartTxFromIsr, nullptr);
XUartLite_SetRecvHandler(uart0, HandleUartRxFromIsr, nullptr);
StartReceiving();
XUartLite_EnableInterrupt(uart0);
sending = false;
}
void UartWriteCrash(std::span<const std::byte> data) {
XUartLite_DisableInterrupt(uart0);
while (data.size() > 0) {
while (XUartLite_IsSending(uart0)) {
}
auto* dat =
reinterpret_cast<uint8_t*>(const_cast<std::byte*>(data.data()));
uint8_t sent = XUartLite_Send(uart0, dat, data.size());
data = data.subspan(sent);
}
while (XUartLite_IsSending(uart0)) {
}
XUartLite_Send(uart0, nullptr, 0); // reset buffer before enabling interrupts
XUartLite_EnableInterrupt(uart0);
}
async::task<> UartWrite(std::span<const std::byte> data) {
while (!tx_ring_buffer.Store(data)) {
co_await async::await(AwaitableType::kUartTx);
}
{
InterruptLock lock;
StartSending();
}
}
async::task<> UartWriteLoop(
async::gimme<std::span<const std::byte>>& data_gen) {
while (1) {
auto data = co_await data_gen;
while (!tx_ring_buffer.Store(data)) {
co_await async::await(AwaitableType::kUartTx);
}
{
InterruptLock lock;
StartSending();
}
}
}
// TODO: use chunks to allow receiving more than 256 bytes at once
void UartReadBlocking(std::span<std::byte> data) {
while (!rx_ring_buffer.Load(data)) {
}
}
void UartWriteBlocking(std::span<const std::byte> data) {
while (!tx_ring_buffer.Store(data)) {
}
{
InterruptLock lock;
StartSending();
}
}
async::task<std::byte> UartReadLoop() {
std::byte c;
while (1) {
while (!rx_ring_buffer.Load(std::span{&c, 1})) {
co_await async::await(AwaitableType::kUartRx);
}
co_yield c;
}
}
async::task<buffer> UartRead(int size) {
auto buff = buffer::make(size);
while (!rx_ring_buffer.Load(buff.data)) {
co_await async::await(AwaitableType::kUartRx);
}
co_return buff;
}
void HandleUartTxFromIsr(void*, unsigned int transmitted) {
sending = false;
tx_ring_buffer.Pop(transmitted);
StartSending();
async::resume(AwaitableType::kUartTx);
}
void HandleUartRxFromIsr(void*, unsigned int transmitted) {
rx_ring_buffer.Push(transmitted);
StartReceiving();
async::resume(AwaitableType::kUartRx);
}
void HandleUartIsr() { XUartLite_InterruptHandler(uart0); }