synth/arm/hal/lib/common/xil_testmem.c

1576 lines
37 KiB
C

/******************************************************************************
* Copyright (c) 2009 - 2022 Xilinx, Inc. All rights reserved.
* SPDX-License-Identifier: MIT
******************************************************************************/
/*****************************************************************************/
/**
*
* @file xil_testmem.c
* @addtogroup common_test_utils
*
*
* <pre>
* MODIFICATION HISTORY:
*
* Ver Who Date Changes
* ----- ---- -------- -----------------------------------------------
* 1.00a hbm 08/25/09 First release
* 7.5 mus 03/10/21 Added new set of Xil_TestMem32, Xil_TestMem16 and
* Xil_TestMem8 APIs to support memory test for memory
* regions mapped at extended addresses
* (addresses > 4 GB). These new set of APIs would be
* compiled only for 32 bit Microblaze processor, if
* XPAR_MICROBLAZE_ADDR_SIZE is greater than 32.
* It fixes CR#1089129.
* 7.6 mus 07/29/21 Updated Xil_TestMem8 to fix issues reported by static
* analysis tool. It fixes CR#1105956.
* 7.7 sk 01/10/22 Remove commented macro to fix misra_c_2012_directive_4_4
* violation.
* 7.7 sk 01/10/22 Modify operands to fix misra_c_2012_rule_10_1 violation.
* 7.7 sk 01/10/22 Typecast to make the both left and right sides expressions
* of same type and fix misra_c_2012_rule_10_6 violation.
* 7.7 sk 01/10/22 Modify varaiable name from I to i to fix misra_c_2012_rule_
* 21_2 violation.
* 7.7 sk 01/10/22 Remove arithematic operations on pointer varaible to fix
* misra_c_2012_rule_18_4 violation.
* </pre>
*
*****************************************************************************/
/***************************** Include Files ********************************/
#include "xil_testmem.h"
#include "xil_io.h"
#include "xil_assert.h"
/************************** Constant Definitions ****************************/
/************************** Function Prototypes *****************************/
static u32 RotateLeft(u32 Input, u8 Width);
/* define ROTATE_RIGHT to give access to this functionality */
#ifdef ROTATE_RIGHT
static u32 RotateRight(u32 Input, u8 Width);
#endif /* ROTATE_RIGHT */
#if defined(__MICROBLAZE__) && !defined(__arch64__) && (XPAR_MICROBLAZE_ADDR_SIZE > 32)
/*****************************************************************************/
/**
*
* @brief Perform a destructive 8-bit wide memory test.
*
* @param Addrlow: lower 32 bit address of memory to be tested.
* @param Addrhigh: upper 32 bit address of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: type of test selected. See xil_testmem.h for possible
* values.
*
* @return
* - -1 is returned for a failure
* - 0 is returned for a pass
*
* @note
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem8(u32 Addrlow, u32 Addrhigh, u32 Words, u8 Pattern, u8 Subtest)
{
u32 I;
u32 j;
u8 Val;
u8 WordMem8;
s32 Status = 0;
u64 Addr = (Addrlow + ((u64)Addrhigh << 32));
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
/*
* select the proper Subtest(s)
*/
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from XIL_TESTMEM_INIT_VALUE
*/
for (I = 0U; I < Words; I++) {
/* write memory location */
sbea(Addr+I, Val);
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = XIL_TESTMEM_INIT_VALUE;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (I = 0U; I < Words; I++) {
/* read memory location */
WordMem8 = lbuea(Addr+I);
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val++;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0U; j < NUM_OF_BITS_IN_BYTE; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (u8)((u32)1 << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < NUM_OF_BITS_IN_BYTE; I++) {
/* write memory location */
sbea(Addr+I, Val);
Val = (u8)RotateLeft(Val, 8U);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u8)((u32)1 << j);
/* Read the values from each location that was written */
for (I = 0U; I < NUM_OF_BITS_IN_BYTE; I++) {
/* read memory location */
WordMem8 = lbuea(Addr+I);
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val = (u8)RotateLeft(Val, NUM_OF_BITS_IN_BYTE);
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible initial test
* Patterns for walking zeros test
*/
for (j = 0U; j < NUM_OF_BITS_IN_BYTE; j++) {
/*
* Generate an initial value for walking ones test to test
* for bad data bits
*/
Val = (u8) (~(1U << j));
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < NUM_OF_BITS_IN_BYTE; I++) {
/* write memory location */
sbea(Addr+I, Val);
Val = ~((u8)RotateLeft(~Val, NUM_OF_BITS_IN_BYTE));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u8) (~(1U << j));
/* Read the values from each location that was written */
for (I = 0U; I < NUM_OF_BITS_IN_BYTE; I++) {
/* read memory location */
WordMem8 = lbuea(Addr+I);
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u8)RotateLeft(~Val, NUM_OF_BITS_IN_BYTE));
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (I = 0U; I < Words; I++) {
/* write memory location */
Val = (u8) (~((INTPTR) (Addr + I)));
sbea(Addr+I, Val);
}
/*
* Check every word within the words
* of tested memory
*/
for (I = 0U; I < Words; I++) {
/* read memory location */
WordMem8 = lbuea(Addr+I);
Val = (u8) (~((INTPTR) (Addr+I)));
if ((WordMem8 ^ Val) != 0x00U) {
Status = -1;
goto End_Label;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u8)0) {
Val = 0xA5U;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed Pattern
*/
for (I = 0U; I < Words; I++) {
/* write memory location */
sbea(Addr+I, Val);
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed Pattern
*/
for (I = 0U; I < Words; I++) {
/* read memory location */
WordMem8 = lbuea(Addr+I);
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
}
}
End_Label:
return Status;
}
/*****************************************************************************/
/**
*
* @brief Perform a destructive 16-bit wide memory test.
*
* @param Addrlow: lower 32 bit address of memory to be tested.
* @param Addrhigh: upper 32 bit address of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant Pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: type of test selected. See xil_testmem.h for possible
* values.
*
* @return
*
* - -1 is returned for a failure
* - 0 is returned for a pass
*
* @note
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem16(u32 Addrlow,u32 Addrhigh, u32 Words, u16 Pattern, u8 Subtest)
{
u32 I;
u32 j;
u16 Val;
u16 WordMem16;
s32 Status = 0;
u64 Addr = (Addrlow + ((u64)Addrhigh << 32));
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
/*
* selectthe proper Subtest(s)
*/
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from 'XIL_TESTMEM_INIT_VALUE'
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * Words);) {
/* write memory location */
shea(Addr+I, Val);
Val++;
I = I + NUM_OF_BYTES_IN_HW;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = XIL_TESTMEM_INIT_VALUE;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference val
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * Words);) {
/* read memory location */
WordMem16 = lhuea(Addr+I);
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val++;
I = I + NUM_OF_BYTES_IN_HW;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial test
* Patterns for walking ones test
*/
for (j = 0U; j < NUM_OF_BITS_IN_HW; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (u16)((u32)1 << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * NUM_OF_BITS_IN_HW); ) {
/* write memory location */
shea(Addr+I,Val);
Val = (u16)RotateLeft(Val, 16U);
I = I + NUM_OF_BYTES_IN_HW;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u16)((u32)1 << j);
/* Read the values from each location that was written */
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * NUM_OF_BITS_IN_HW); ) {
/* read memory location */
WordMem16 = lhuea(Addr+I);
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val = (u16)RotateLeft(Val, NUM_OF_BITS_IN_HW);
I = I + NUM_OF_BYTES_IN_HW;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking zeros test
*/
for (j = 0U; j < NUM_OF_BITS_IN_HW; j++) {
/*
* Generate an initial value for walking ones
* test to test for bad
* data bits
*/
Val = ~(1U << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * NUM_OF_BITS_IN_HW);) {
shea(Addr+I, Val);
Val = ~((u16)RotateLeft(~Val, 16U));
I = I + NUM_OF_BYTES_IN_HW;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1U << j);
/* Read the values from each location that was written */
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * NUM_OF_BITS_IN_HW); ) {
WordMem16= lhuea(Addr+I);
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u16)RotateLeft(~Val, NUM_OF_BITS_IN_HW));
I = I + NUM_OF_BYTES_IN_HW;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * Words);) {
/* write memory location */
Val = (u16) (~((INTPTR)((Addr+I))));
shea(Addr+I, Val);
I = I + NUM_OF_BYTES_IN_HW;
}
/*
* Check every word within the words
* of tested memory
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW*Words); ) {
/* read memory location */
WordMem16 = lhuea(Addr+I);
Val = (u16) (~((INTPTR) ((Addr+I))));
if ((WordMem16 ^ Val) != 0x0000U) {
Status = -1;
goto End_Label;
}
I = I + NUM_OF_BYTES_IN_HW;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u16)0) {
Val = 0xDEADU;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed pattern
*/
for (I = 0U; I < (2*Words);) {
/* write memory location */
shea(Addr+I, Val);
I = I + NUM_OF_BYTES_IN_HW;
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed pattern
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_HW * Words);) {
/* read memory location */
WordMem16=lhuea(Addr+I);
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
I = I + NUM_OF_BYTES_IN_HW;
}
}
End_Label:
return Status;
}
/*****************************************************************************/
/**
*
* @brief Perform a destructive 32-bit wide memory test.
*
* @param Addrlow: lower 32 bit address of memory to be tested.
* @param Addrhigh: upper 32 bit address of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: test type selected. See xil_testmem.h for possible
* values.
*
* @return
* - 0 is returned for a pass
* - 1 is returned for a failure
*
* @note
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem32(u32 Addrlow, u32 Addrhigh, u32 Words, u32 Pattern, u8 Subtest)
{
u32 I;
u32 j;
u32 Val;
u32 WordMem32;
s32 Status = 0;
u64 Addr = (Addrlow + ((u64)Addrhigh << 32));
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= (u8)XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from 'XIL_TESTMEM_INIT_VALUE'
*/
for (I = 0U; I <(NUM_OF_BYTES_IN_WORD * Words);) {
swea(Addr+I, Val);
Val++;
I = I + NUM_OF_BYTES_IN_WORD;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = XIL_TESTMEM_INIT_VALUE;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (I = 0U; I < ( NUM_OF_BYTES_IN_WORD * Words);) {
WordMem32 = lwea(Addr+I);
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val++;
I = I + NUM_OF_BYTES_IN_WORD;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0U; j < NUM_OF_BITS_IN_WORD; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (1U << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_WORD * NUM_OF_BITS_IN_WORD);) {
/* write memory location */
swea(Addr+I, Val);
Val = (u32) RotateLeft(Val, NUM_OF_BITS_IN_WORD);
I = I + NUM_OF_BYTES_IN_WORD;
}
/*
* Restore the reference 'val' to the
* initial value
*/
Val = 1U << j;
/* Read the values from each location that was
* written */
for (I = 0U; I < ((u32)32 * NUM_OF_BYTES_IN_WORD);) {
/* read memory location */
WordMem32 = lwea(Addr+I);
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val = (u32)RotateLeft(Val, NUM_OF_BITS_IN_WORD);
I = I + NUM_OF_BYTES_IN_WORD;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible
* initial test Patterns for walking zeros test
*/
for (j = 0U; j < NUM_OF_BITS_IN_WORD; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = ~(1U << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (I = 0U; I < (NUM_OF_BITS_IN_WORD * NUM_OF_BYTES_IN_WORD);) {
/* write memory location */
swea(Addr+I, Val);
Val = ~((u32)RotateLeft(~Val, NUM_OF_BITS_IN_WORD));
I = I + NUM_OF_BYTES_IN_WORD;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1U << j);
/* Read the values from each location that was
* written */
for (I = 0U; I < (NUM_OF_BITS_IN_WORD * NUM_OF_BYTES_IN_WORD);) {
/* read memory location */
WordMem32 = lwea(Addr+I);
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u32)RotateLeft(~Val, NUM_OF_BITS_IN_WORD));
I = I + NUM_OF_BYTES_IN_WORD;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (I = 0U; I < (NUM_OF_BYTES_IN_WORD * Words);) {
/* write memory location */
Val = (u32) (~((INTPTR) (Addr+I)));
swea(Addr+I, Val);
I = I + NUM_OF_BYTES_IN_WORD;
}
/*
* Check every word within the words
* of tested memory
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_WORD * Words);) {
/* Read the location */
WordMem32 = lwea(Addr+I);
Val = (u32) (~((INTPTR) (Addr+I)));
if ((WordMem32 ^ Val) != 0x00000000U) {
Status = -1;
goto End_Label;
}
I = I + NUM_OF_BYTES_IN_WORD;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u32)0) {
Val = 0xDEADBEEFU;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed Pattern
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_WORD * Words);) {
/* write memory location */
swea(Addr+I, Val);
I = I + NUM_OF_BYTES_IN_WORD;
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed Pattern
*/
for (I = 0U; I < (NUM_OF_BYTES_IN_WORD * Words);) {
/* read memory location */
WordMem32 = lwea(Addr+I);
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
I = I + NUM_OF_BYTES_IN_WORD;
}
}
End_Label:
return Status;
}
#else
/*****************************************************************************/
/**
*
* @brief Perform a destructive 32-bit wide memory test.
*
* @param Addr: pointer to the region of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: test type selected. See xil_testmem.h for possible
* values.
*
* @return
* - 0 is returned for a pass
* - 1 is returned for a failure
*
* @note
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem32(u32 *Addr, u32 Words, u32 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u32 Val;
u32 FirtVal;
u32 WordMem32;
s32 Status = 0;
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= (u8)XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
FirtVal = XIL_TESTMEM_INIT_VALUE;
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from 'FirtVal'
*/
for (i = 0U; i < Words; i++) {
Addr[i] = Val;
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirtVal;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (i = 0U; i < Words; i++) {
WordMem32 = Addr[i];
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val++;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0U; j < (u32)32; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (1UL << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)32; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u32) RotateLeft(Val, 32U);
}
/*
* Restore the reference 'val' to the
* initial value
*/
Val = 1UL << j;
/* Read the values from each location that was
* written */
for (i = 0U; i < (u32)32; i++) {
/* read memory location */
WordMem32 = Addr[i];
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val = (u32)RotateLeft(Val, 32U);
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible
* initial test Patterns for walking zeros test
*/
for (j = 0U; j < (u32)32; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = ~(1UL << j);
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)32; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u32)RotateLeft(~Val, 32U));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = ~(1UL << j);
/* Read the values from each location that was
* written */
for (i = 0U; i < (u32)32; i++) {
/* read memory location */
WordMem32 = Addr[i];
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u32)RotateLeft(~Val, 32U));
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (i = 0U; i < Words; i++) {
/* write memory location */
Val = ~(u32) (UINTPTR) &Addr[i];
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory
*/
for (i = 0U; i < Words; i++) {
/* Read the location */
WordMem32 = Addr[i];
Val = ~(u32) (UINTPTR) &Addr[i];
if ((WordMem32 ^ Val) != 0x00000000U) {
Status = -1;
goto End_Label;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u32)0) {
Val = 0xDEADBEEFU;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed Pattern
*/
for (i = 0U; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed Pattern
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem32 = Addr[i];
if (WordMem32 != Val) {
Status = -1;
goto End_Label;
}
}
}
End_Label:
return Status;
}
/*****************************************************************************/
/**
*
* @brief Perform a destructive 16-bit wide memory test.
*
* @param Addr: pointer to the region of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant Pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: type of test selected. See xil_testmem.h for possible
* values.
*
* @return
*
* - -1 is returned for a failure
* - 0 is returned for a pass
*
* @note Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem16(u16 *Addr, u32 Words, u16 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u16 Val;
u16 FirtVal;
u16 WordMem16;
s32 Status = 0;
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
FirtVal = XIL_TESTMEM_INIT_VALUE;
/*
* selectthe proper Subtest(s)
*/
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from 'FirtVal'
*/
for (i = 0U; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirtVal;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference val
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem16 = Addr[i];
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val++;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial test
* Patterns for walking ones test
*/
for (j = 0U; j < (u32)16; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (u16)((u32)1 << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)16; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u16)RotateLeft(Val, 16U);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u16)((u32)1 << j);
/* Read the values from each location that was written */
for (i = 0U; i < (u32)16; i++) {
/* read memory location */
WordMem16 = Addr[i];
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val = (u16)RotateLeft(Val, 16U);
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking zeros test
*/
for (j = 0U; j < (u32)16; j++) {
/*
* Generate an initial value for walking ones
* test to test for bad
* data bits
*/
Val = (u16) (~((u16)1U << j));
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)16; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u16)RotateLeft(~((u32)Val), 16U));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u16) (~((u16)1U << j));
/* Read the values from each location that was written */
for (i = 0U; i < (u32)16; i++) {
/* read memory location */
WordMem16 = Addr[i];
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u16)RotateLeft(~((u32)Val), 16U));
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (i = 0U; i < Words; i++) {
/* write memory location */
Val = ~(u16) (UINTPTR) &Addr[i];
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem16 = Addr[i];
Val = ~(u16) (UINTPTR) &Addr[i];
if ((WordMem16 ^ Val) != 0x0000U) {
Status = -1;
goto End_Label;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u16)0) {
Val = 0xDEADU;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed pattern
*/
for (i = 0U; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed pattern
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem16 = Addr[i];
if (WordMem16 != Val) {
Status = -1;
goto End_Label;
}
}
}
End_Label:
return Status;
}
/*****************************************************************************/
/**
*
* @brief Perform a destructive 8-bit wide memory test.
*
* @param Addr: pointer to the region of memory to be tested.
* @param Words: length of the block.
* @param Pattern: constant used for the constant pattern test, if 0,
* 0xDEADBEEF is used.
* @param Subtest: type of test selected. See xil_testmem.h for possible
* values.
*
* @return
* - -1 is returned for a failure
* - 0 is returned for a pass
*
* @note
* Used for spaces where the address range of the region is smaller than
* the data width. If the memory range is greater than 2 ** Width,
* the patterns used in XIL_TESTMEM_WALKONES and XIL_TESTMEM_WALKZEROS will
* repeat on a boundary of a power of two making it more difficult to detect
* addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR
* tests suffer the same problem. Ideally, if large blocks of memory are to be
* tested, break them up into smaller regions of memory to allow the test
* patterns used not to repeat over the region tested.
*
*****************************************************************************/
s32 Xil_TestMem8(u8 *Addr, u32 Words, u8 Pattern, u8 Subtest)
{
u32 i;
u32 j;
u8 Val;
u8 FirtVal;
u8 WordMem8;
s32 Status = 0;
Xil_AssertNonvoid(Words != (u32)0);
Xil_AssertNonvoid(Subtest <= XIL_TESTMEM_MAXTEST);
/*
* variable initialization
*/
Val = XIL_TESTMEM_INIT_VALUE;
FirtVal = XIL_TESTMEM_INIT_VALUE;
/*
* select the proper Subtest(s)
*/
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INCREMENT)) {
/*
* Fill the memory with incrementing
* values starting from 'FirtVal'
*/
for (i = 0U; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
Val++;
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = FirtVal;
/*
* Check every word within the words
* of tested memory and compare it
* with the incrementing reference
* Val
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem8 = Addr[i];
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val++;
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKONES)) {
/*
* set up to cycle through all possible initial
* test Patterns for walking ones test
*/
for (j = 0U; j < (u32)8; j++) {
/*
* Generate an initial value for walking ones test
* to test for bad data bits
*/
Val = (u8)((u32)1 << j);
/*
* START walking ones test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)8; i++) {
/* write memory location */
Addr[i] = Val;
Val = (u8)RotateLeft(Val, 8U);
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u8)((u32)1 << j);
/* Read the values from each location that was written */
for (i = 0U; i < (u32)8; i++) {
/* read memory location */
WordMem8 = Addr[i];
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val = (u8)RotateLeft(Val, 8U);
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_WALKZEROS)) {
/*
* set up to cycle through all possible initial test
* Patterns for walking zeros test
*/
for (j = 0U; j < (u32)8; j++) {
/*
* Generate an initial value for walking ones test to test
* for bad data bits
*/
Val = (u8) (~(1U << j));
/*
* START walking zeros test
* Write a one to each data bit indifferent locations
*/
for (i = 0U; i < (u32)8; i++) {
/* write memory location */
Addr[i] = Val;
Val = ~((u8)RotateLeft(~((u32)Val), 8U));
}
/*
* Restore the reference 'Val' to the
* initial value
*/
Val = (u8) (~(1U << j));
/* Read the values from each location that was written */
for (i = 0U; i < (u32)8; i++) {
/* read memory location */
WordMem8 = Addr[i];
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
Val = ~((u8)RotateLeft(~((u32)Val), 8U));
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_INVERSEADDR)) {
/* Fill the memory with inverse of address */
for (i = 0U; i < Words; i++) {
/* write memory location */
Val = ~(u8) (UINTPTR) &Addr[i];
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem8 = Addr[i];
Val = ~(u8) (UINTPTR) &Addr[i];
if ((WordMem8 ^ Val) != 0x00U) {
Status = -1;
goto End_Label;
}
}
}
if((Subtest == XIL_TESTMEM_ALLMEMTESTS) || (Subtest == XIL_TESTMEM_FIXEDPATTERN)) {
/*
* Generate an initial value for
* memory testing
*/
if (Pattern == (u8)0) {
Val = 0xA5U;
}
else {
Val = Pattern;
}
/*
* Fill the memory with fixed Pattern
*/
for (i = 0U; i < Words; i++) {
/* write memory location */
Addr[i] = Val;
}
/*
* Check every word within the words
* of tested memory and compare it
* with the fixed Pattern
*/
for (i = 0U; i < Words; i++) {
/* read memory location */
WordMem8 = Addr[i];
if (WordMem8 != Val) {
Status = -1;
goto End_Label;
}
}
}
End_Label:
return Status;
}
#endif
/*****************************************************************************/
/**
*
* @brief Rotates the provided value to the left one bit position
*
* @param Input is value to be rotated to the left
* @param Width is the number of bits in the input data
*
* @return The resulting unsigned long value of the rotate left
*
*
*****************************************************************************/
static u32 RotateLeft(u32 Input, u8 Width)
{
u32 Msb;
u32 ReturnVal;
u32 WidthMask;
u32 MsbMask;
u32 LocalInput = Input;
/*
* set up the WidthMask and the MsbMask
*/
MsbMask = 1UL << (Width - 1U);
WidthMask = (MsbMask << (u32)1) - (u32)1;
/*
* set the Width of the Input to the correct width
*/
LocalInput = LocalInput & WidthMask;
Msb = LocalInput & MsbMask;
ReturnVal = LocalInput << 1U;
if (Msb != 0x00000000U) {
ReturnVal = ReturnVal | (u32)0x00000001;
}
ReturnVal = ReturnVal & WidthMask;
return ReturnVal;
}
#ifdef ROTATE_RIGHT
/*****************************************************************************/
/**
*
* @brief Rotates the provided value to the right one bit position
*
* @param Input: value to be rotated to the right
* @param Width: number of bits in the input data
*
* @return
* The resulting u32 value of the rotate right
*
*****************************************************************************/
static u32 RotateRight(u32 Input, u8 Width)
{
u32 Lsb;
u32 ReturnVal;
u32 WidthMask;
u32 MsbMask;
u32 LocalInput = Input;
/*
* set up the WidthMask and the MsbMask
*/
MsbMask = 1U << (Width - 1U);
WidthMask = (MsbMask << 1U) - 1U;
/*
* set the width of the input to the correct width
*/
LocalInput = LocalInput & WidthMask;
ReturnVal = LocalInput >> 1U;
Lsb = LocalInput & 0x00000001U;
if (Lsb != 0x00000000U) {
ReturnVal = ReturnVal | MsbMask;
}
ReturnVal = ReturnVal & WidthMask;
return ReturnVal;
}
#endif /* ROTATE_RIGHT */