library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use std.textio.all;

entity cpu_test is
end cpu_test;

architecture rtl of cpu_test is

  component cpu is port(
                         clk: in std_logic;
                         rst: in std_logic;

                         code_data: in std_logic_vector(15 downto 0);
                         code_addr: out std_logic_vector(15 downto 0);

                         mem_in: in std_logic_vector(15 downto 0);
                         mem_out: out std_logic_vector(15 downto 0);
                         mem_addr: out std_logic_vector(15 downto 0);
                         mem_write: out std_logic;
                         mem_read: out std_logic;
                         mem_busy: in std_logic
                       );
  end component;

  type romtype is array(0 to 11) of std_logic_vector(15 downto 0);
  signal romdata: romtype := (
    x"0000", -- NOP
    x"e02a", -- SET r0, 42
    x"e125", -- SET r1, 37
    x"2010", -- STORE r0, [r1]
    x"1210", -- LOAD r2, [r1]
    x"3322", -- ADD r3, r2, r2
    x"2310", -- STORE r3, [r1]
    x"c020", -- CMP r0, r2
    x"de01", -- BEQ pc, 2
    x"0000", -- NOP
    x"ee00", -- SET pc, 0
    x"0000"
  );

  signal finished, clk, rst: std_logic := '0';
  signal mem_write, mem_read, mem_busy: std_logic;
  signal rom_data, rom_addr, mem_in, mem_out, mem_addr: std_logic_vector(15 downto 0);

begin
  dut: cpu port map(clk => clk, rst => rst,
                    code_data => rom_data, code_addr => rom_addr,
                    mem_in => mem_in, mem_out => mem_out, mem_addr => mem_addr,
                    mem_write => mem_write, mem_read => mem_read, mem_busy => mem_busy);

  -- clock
  process
  begin
    if finished = '0' then
      clk <= not clk;
      wait for 5 ns;
    else
      clk <= '0';
      wait;
    end if;
  end process;

  -- rom
  process(clk) is
    variable code_index: natural;
    variable data_index: natural;
    constant alignment: positive := 16 / 8;
  begin
    if rising_edge(clk) then
      code_index := to_integer(unsigned(rom_addr)) / alignment;
      rom_data <= romdata(code_index);
    end if;
  end process;

  process(rom_addr)
    constant alignment: positive := 16 / 8;
    variable index: natural;
  begin
  end process;

  process
  begin
    rst <= '1';

    wait for 1 ns;
    assert(rom_addr=x"0000") report "Fail rst" severity error;

    rst <= '0';

    wait for 10 ns;
    assert(rom_addr=x"0002") report "Fail PC advance @00" severity error;

    wait for 30 ns;
    assert(rom_addr=x"0008") report "Fail PC @06" severity error;
    assert(mem_write='1') report "Fail set mem_write to 1" severity error;
    assert(mem_addr=x"0025") report "Fail set mem_addr to 0x25" severity error;
    assert(mem_out=x"002a") report "Fail set mem_out to 42" severity error;

    mem_busy <= '1';

    wait for 10 ns;
    assert(rom_addr=x"0008") report "Fail hold PC @08" severity error;
    assert(mem_read='0') report "Fail to wait until mem_busy is low" severity error;

    mem_busy <= '0';

    wait for 10 ns;
    assert(rom_addr=x"000a") report "Fail PC @08" severity error;
    assert(mem_write='0') report "Fail set mem_write to 0" severity error;
    assert(mem_read='1') report "Fail set mem_read to 1" severity error;
    assert(mem_addr=x"0025") report "Fail set mem_addr to 0x25" severity error;
    mem_in <= x"002a";

    wait for 30 ns;
    assert(rom_addr=x"000e") report "Fail PC @0c" severity error;
    assert(mem_write='1') report "Fail set mem_write to 1" severity error;
    assert(mem_addr=x"0025") report "Fail set mem_addr to 0x25" severity error;
    assert(mem_out=x"0054") report "Fail set mem_out to 84" severity error;

    wait for 40 ns;
    assert(rom_addr=x"0016") report "Fail to branch" severity error;

    wait for 10 ns;
    assert(rom_addr=x"0000") report "Fail to jump" severity error;

    assert false report "Test done." severity note;
    finished <= '1';
    wait;
  end process;
end rtl;