arm: async echo app
This commit is contained in:
parent
30d9a2d7c8
commit
932b8d4582
@ -7,9 +7,12 @@ SECTIONS
|
||||
{
|
||||
.text :
|
||||
{
|
||||
_text_begin = .;
|
||||
KEEP(*(.app_init))
|
||||
|
||||
*(.text*)
|
||||
_text_end = .;
|
||||
|
||||
*(.rodata*)
|
||||
} > ICTM
|
||||
|
||||
@ -30,5 +33,8 @@ SECTIONS
|
||||
__exidx_end = .;
|
||||
} > ICTM
|
||||
|
||||
_heap_begin = .;
|
||||
|
||||
_initial_stack_pointer = 16384;
|
||||
_heap_end = _initial_stack_pointer - 1024;
|
||||
}
|
||||
|
132
arm/async.cc
Normal file
132
arm/async.cc
Normal file
@ -0,0 +1,132 @@
|
||||
#include "async.h"
|
||||
|
||||
#include <array>
|
||||
#include <atomic>
|
||||
#include <chrono>
|
||||
|
||||
namespace async {
|
||||
namespace {
|
||||
|
||||
using namespace std::literals::chrono_literals;
|
||||
|
||||
struct Stuff {
|
||||
std::coroutine_handle<> h;
|
||||
std::chrono::system_clock::time_point expiration;
|
||||
|
||||
Stuff* next;
|
||||
};
|
||||
|
||||
std::atomic<Stuff*> work;
|
||||
std::array<std::atomic<Stuff*>, static_cast<size_t>(AwaitableType::kNumTypes)>
|
||||
queues;
|
||||
|
||||
} // namespace
|
||||
|
||||
void schedule(std::coroutine_handle<> h, int ms) {
|
||||
std::chrono::system_clock::time_point exp =
|
||||
std::chrono::system_clock::now() + std::chrono::milliseconds(ms);
|
||||
Stuff* news = new Stuff{
|
||||
.h = h,
|
||||
.expiration = exp,
|
||||
};
|
||||
|
||||
Stuff* stuff = work;
|
||||
|
||||
if (!stuff || stuff->expiration > exp) {
|
||||
news->next = stuff;
|
||||
work = news;
|
||||
return;
|
||||
}
|
||||
|
||||
Stuff* s = stuff;
|
||||
while (s->next && s->next->expiration <= exp) {
|
||||
s = s->next;
|
||||
}
|
||||
|
||||
news->next = s->next;
|
||||
s->next = news;
|
||||
}
|
||||
|
||||
void main_loop(void (*idle_function)()) {
|
||||
while (1) {
|
||||
if (idle_function != nullptr) {
|
||||
idle_function();
|
||||
}
|
||||
Stuff* stuff = work;
|
||||
if (stuff == nullptr) {
|
||||
continue; // busyloop
|
||||
}
|
||||
|
||||
auto now = std::chrono::system_clock::now();
|
||||
auto dt = stuff->expiration - now;
|
||||
|
||||
if (dt > 0ms) {
|
||||
continue;
|
||||
}
|
||||
|
||||
stuff->h();
|
||||
if (stuff->h.done()) {
|
||||
stuff->h.destroy();
|
||||
}
|
||||
|
||||
Stuff* oldstuff = stuff;
|
||||
work = stuff->next;
|
||||
|
||||
delete oldstuff;
|
||||
}
|
||||
}
|
||||
|
||||
void enqueue(std::coroutine_handle<> h, AwaitableType type) {
|
||||
Stuff* item = new Stuff{.h = h};
|
||||
auto ttype = static_cast<size_t>(type);
|
||||
Stuff* stuff = queues[ttype];
|
||||
if (stuff == nullptr) {
|
||||
queues[ttype] = item;
|
||||
return;
|
||||
}
|
||||
while (stuff->next != nullptr) {
|
||||
stuff = stuff->next;
|
||||
}
|
||||
stuff->next = item;
|
||||
}
|
||||
|
||||
void resume(AwaitableType type) {
|
||||
auto ttype = static_cast<size_t>(type);
|
||||
Stuff* stuff = queues[ttype];
|
||||
if (stuff == nullptr) {
|
||||
return;
|
||||
}
|
||||
|
||||
queues[ttype] = stuff->next;
|
||||
schedule(stuff->h);
|
||||
delete stuff;
|
||||
}
|
||||
|
||||
} // namespace async
|
||||
|
||||
#if 0
|
||||
|
||||
task<buffer> readline() {
|
||||
int size = 0;
|
||||
char c;
|
||||
|
||||
buffer buff = buffer::make(32);
|
||||
|
||||
// fcntl(0, F_SETFL, fcntl(0, F_GETFL) | O_NONBLOCK);
|
||||
|
||||
while (true) {
|
||||
int n = read(0, &c, 1);
|
||||
if (n < 1) {
|
||||
co_await co_waitio();
|
||||
continue;
|
||||
}
|
||||
buff.data[size++] = static_cast<std::byte>(c);
|
||||
|
||||
if (c == '\n') {
|
||||
buff.data = buff.data.subspan(0, size);
|
||||
co_return buff;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // 0
|
127
arm/async.h
Normal file
127
arm/async.h
Normal file
@ -0,0 +1,127 @@
|
||||
#pragma once
|
||||
|
||||
#include <chrono>
|
||||
#include <coroutine>
|
||||
#include <utility>
|
||||
|
||||
namespace async {
|
||||
|
||||
template<typename T = void>
|
||||
struct task {
|
||||
struct promise_type;
|
||||
using handle_type = std::coroutine_handle<promise_type>;
|
||||
|
||||
struct maybe_suspend {
|
||||
bool await_ready() noexcept(true) { return !parent; }
|
||||
void await_suspend(std::coroutine_handle<>) noexcept(true) {
|
||||
if (parent) {
|
||||
parent();
|
||||
}
|
||||
}
|
||||
void await_resume() noexcept(true) { }
|
||||
|
||||
std::coroutine_handle<> parent;
|
||||
};
|
||||
|
||||
struct promise_type {
|
||||
task get_return_object() { return {.h = handle_type::from_promise(*this)}; }
|
||||
std::suspend_always initial_suspend() noexcept { return {}; }
|
||||
maybe_suspend final_suspend() noexcept { return { .parent = parent }; }
|
||||
void return_value(T&& value) { ret_value = std::move(value); }
|
||||
void unhandled_exception() {}
|
||||
|
||||
T ret_value;
|
||||
std::coroutine_handle<> parent;
|
||||
};
|
||||
|
||||
// awaitable
|
||||
bool await_ready() { return h.done(); }
|
||||
void await_suspend(std::coroutine_handle<> ha) {
|
||||
h();
|
||||
h.promise().parent = ha;
|
||||
}
|
||||
T await_resume() { return std::move(h.promise().ret_value); }
|
||||
|
||||
std::coroutine_handle<promise_type> h;
|
||||
};
|
||||
|
||||
template<>
|
||||
struct task<void> {
|
||||
struct promise_type;
|
||||
using handle_type = std::coroutine_handle<promise_type>;
|
||||
|
||||
struct maybe_suspend {
|
||||
bool await_ready() noexcept(true) { return !parent; }
|
||||
void await_suspend(std::coroutine_handle<>) noexcept(true) {
|
||||
if (parent) {
|
||||
parent();
|
||||
}
|
||||
}
|
||||
void await_resume() noexcept(true) { }
|
||||
|
||||
std::coroutine_handle<> parent;
|
||||
};
|
||||
|
||||
struct promise_type {
|
||||
task get_return_object() { return {.h = handle_type::from_promise(*this)}; }
|
||||
std::suspend_always initial_suspend() noexcept { return {}; }
|
||||
maybe_suspend final_suspend() noexcept { return { .parent = parent }; }
|
||||
void return_void() {}
|
||||
void unhandled_exception() {}
|
||||
|
||||
std::coroutine_handle<> parent;
|
||||
};
|
||||
|
||||
// awaitable
|
||||
bool await_ready() { return h.done(); }
|
||||
void await_suspend(std::coroutine_handle<> ha) {
|
||||
h();
|
||||
h.promise().parent = ha;
|
||||
}
|
||||
void await_resume() {}
|
||||
|
||||
std::coroutine_handle<promise_type> h;
|
||||
};
|
||||
|
||||
enum class AwaitableType {
|
||||
kUnknown = 0,
|
||||
kUartRx = 1,
|
||||
|
||||
kNumTypes
|
||||
};
|
||||
|
||||
void schedule(std::coroutine_handle<> h, int ms = 0);
|
||||
void enqueue(std::coroutine_handle<> h, AwaitableType type);
|
||||
void resume(AwaitableType type); // typically called from an ISR
|
||||
|
||||
void main_loop(void (*idle_function)());
|
||||
|
||||
inline auto await(AwaitableType type) {
|
||||
struct awaitable {
|
||||
AwaitableType type;
|
||||
|
||||
bool await_ready() { return false; };
|
||||
void await_suspend(std::coroutine_handle<> h) {
|
||||
enqueue(h, type);
|
||||
}
|
||||
void await_resume() {}
|
||||
};
|
||||
|
||||
return awaitable{type};
|
||||
}
|
||||
|
||||
inline auto delay(int ms) {
|
||||
struct awaitable {
|
||||
int ms;
|
||||
|
||||
bool await_ready() { return false; };
|
||||
void await_suspend(std::coroutine_handle<> h) {
|
||||
schedule(h, ms);
|
||||
}
|
||||
void await_resume() {}
|
||||
};
|
||||
|
||||
return awaitable{ms};
|
||||
}
|
||||
|
||||
} // namespace async
|
23
arm/buffer.h
Normal file
23
arm/buffer.h
Normal file
@ -0,0 +1,23 @@
|
||||
#pragma once
|
||||
|
||||
#include <span>
|
||||
#include <utility>
|
||||
|
||||
struct buffer {
|
||||
std::span<std::byte> data;
|
||||
|
||||
buffer() = default;
|
||||
buffer(std::span<std::byte> d) : data(d) {}
|
||||
|
||||
static buffer make(size_t size) {
|
||||
return buffer({new std::byte[size], size});
|
||||
}
|
||||
|
||||
buffer(buffer& other) = delete;
|
||||
buffer& operator=(buffer& other) = delete;
|
||||
|
||||
buffer(buffer&& other) : data(std::exchange(other.data, {})) {}
|
||||
buffer& operator=(buffer&& other) { data = std::exchange(other.data, {}); return *this; }
|
||||
|
||||
~buffer() { if (data.data()) { delete[] data.data(); }; }
|
||||
};
|
112
arm/crash.cc
Normal file
112
arm/crash.cc
Normal file
@ -0,0 +1,112 @@
|
||||
#include <cstdint>
|
||||
|
||||
#include "gpio.h"
|
||||
#include "itoa.h"
|
||||
#include "sleep.h"
|
||||
#include "uart.h"
|
||||
|
||||
extern "C" uint32_t _initial_stack_pointer, _text_begin, _text_end;
|
||||
|
||||
namespace crash {
|
||||
namespace {
|
||||
[[maybe_unused]] void CrashHexDump(uint32_t* begin, uint32_t* end,
|
||||
int direction = 1) {
|
||||
char number[] = "00000000 ";
|
||||
char addr[] = "00000000: ";
|
||||
int i = 0;
|
||||
itoa(reinterpret_cast<uint32_t>(begin), addr);
|
||||
UartSendCrash(addr);
|
||||
for (uint32_t* ptr = begin; direction > 0 ? ptr < end : ptr > end;
|
||||
ptr += direction, i++) {
|
||||
itoa(*ptr, number);
|
||||
UartSendCrash(number);
|
||||
if (i % 4 == 3) {
|
||||
UartSendCrash("\r\n");
|
||||
itoa(reinterpret_cast<uint32_t>(ptr + 1), addr);
|
||||
UartSendCrash(addr);
|
||||
}
|
||||
}
|
||||
if (i % 4 != 3) {
|
||||
UartSendCrash("\r\n");
|
||||
}
|
||||
}
|
||||
|
||||
void StackTrace(uint32_t* sp) {
|
||||
char number[] = "00000000\r\n";
|
||||
for (uint32_t* ptr = sp; ptr < &_initial_stack_pointer; ptr++) {
|
||||
auto addr = reinterpret_cast<uint32_t*>(*ptr);
|
||||
if (addr < &_text_begin || addr >= &_text_end || (*ptr & 0x1) == 0) {
|
||||
continue;
|
||||
}
|
||||
itoa(*ptr, number);
|
||||
UartSendCrash(number);
|
||||
}
|
||||
}
|
||||
|
||||
struct Armv6mRegs {
|
||||
uintptr_t r4;
|
||||
uintptr_t r5;
|
||||
uintptr_t r6;
|
||||
uintptr_t r7;
|
||||
uintptr_t r8;
|
||||
uintptr_t r9;
|
||||
uintptr_t r10;
|
||||
uintptr_t r11;
|
||||
uintptr_t sp;
|
||||
|
||||
// saved by the CPU
|
||||
uintptr_t r0;
|
||||
uintptr_t r1;
|
||||
uintptr_t r2;
|
||||
uintptr_t r3;
|
||||
uintptr_t r12;
|
||||
uintptr_t lr;
|
||||
uintptr_t pc;
|
||||
uintptr_t xpsr;
|
||||
};
|
||||
|
||||
void CrashHandler(Armv6mRegs* regs) {
|
||||
char number[] = "00000000\r\n";
|
||||
|
||||
UartSendCrash("\r\n\r\nCra$h!!\r\n- xpsr: 0x");
|
||||
itoa(regs->xpsr, number);
|
||||
UartSendCrash(number);
|
||||
UartSendCrash("- pc: 0x");
|
||||
itoa(regs->pc, number);
|
||||
UartSendCrash(number);
|
||||
UartSendCrash("- lr: 0x");
|
||||
itoa(regs->lr, number);
|
||||
UartSendCrash(number);
|
||||
UartSendCrash("- Stack trace:\r\n");
|
||||
StackTrace(reinterpret_cast<uint32_t*>(regs->sp));
|
||||
|
||||
while (1) {
|
||||
gpio0->data = 0x55;
|
||||
sleep(100);
|
||||
gpio0->data = 0xaa;
|
||||
sleep(100);
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
|
||||
__attribute__((naked)) void HardFaultHandler() {
|
||||
asm volatile(
|
||||
// set those leds first
|
||||
"mov r0, %0 \n"
|
||||
"mov r1, #0xa5 \n"
|
||||
"str r1, [r0] \n"
|
||||
|
||||
"mov r0, r8 \n"
|
||||
"mov r1, r9 \n"
|
||||
"mov r2, r10 \n"
|
||||
"mov r3, r11 \n"
|
||||
"mrs lr, msp \n"
|
||||
"push {r0-r3, lr} \n"
|
||||
"push {r4-r7} \n"
|
||||
"mrs r0, msp \n"
|
||||
"mov r1, %1 \n"
|
||||
"blx r1 \n"
|
||||
:
|
||||
: "r"(gpio0), "r"(CrashHandler));
|
||||
}
|
||||
} // namespace crash
|
5
arm/crash.h
Normal file
5
arm/crash.h
Normal file
@ -0,0 +1,5 @@
|
||||
#pragma once
|
||||
|
||||
namespace crash {
|
||||
void HardFaultHandler();
|
||||
} // namespace crash
|
18
arm/gpio.h
18
arm/gpio.h
@ -7,3 +7,21 @@ struct Gpio {
|
||||
};
|
||||
|
||||
#define gpio0 ((Gpio*) 0x40000000)
|
||||
|
||||
inline void ToggleLed(int which) {
|
||||
uint8_t data = gpio0->data;
|
||||
data ^= (0x1 << which);
|
||||
gpio0->data = data;
|
||||
}
|
||||
|
||||
inline void SetLed(int which) {
|
||||
uint8_t data = gpio0->data;
|
||||
data |= (0x1 << which);
|
||||
gpio0->data = data;
|
||||
}
|
||||
|
||||
inline void ClearLed(int which) {
|
||||
uint8_t data = gpio0->data;
|
||||
data &= ~(0x1 << which);
|
||||
gpio0->data = data;
|
||||
}
|
||||
|
111
arm/hal/cmsis/aum1_cm1.h
Normal file
111
arm/hal/cmsis/aum1_cm1.h
Normal file
@ -0,0 +1,111 @@
|
||||
#pragma once
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
|
||||
/* ------------------------- Interrupt Number Definition ------------------------ */
|
||||
|
||||
typedef enum IRQn
|
||||
{
|
||||
/* ------------------- Cortex-M0 Processor Exceptions Numbers ------------------- */
|
||||
NonMaskableInt_IRQn = -14, /* 2 Non Maskable Interrupt */
|
||||
HardFault_IRQn = -13, /* 3 HardFault Interrupt */
|
||||
|
||||
|
||||
|
||||
//SVCall_IRQn = -5, /* 11 SV Call Interrupt */
|
||||
|
||||
//PendSV_IRQn = -2, /* 14 Pend SV Interrupt */
|
||||
//SysTick_IRQn = -1, /* 15 System Tick Interrupt */
|
||||
|
||||
|
||||
/* ---------------------- ARTY_CM1 Specific Interrupt Numbers ------------------- */
|
||||
Unused0_IRQn = 0,
|
||||
Uart0_IRQn = 1, /* GPIO 0 Interrupt */
|
||||
Timer0_IRQn = 2, /* Timer 0 Interrupt */
|
||||
Unused3_IRQn = 3,
|
||||
Unused4_IRQn = 4,
|
||||
Unused5_IRQn = 5,
|
||||
Unused6_IRQn = 6,
|
||||
Unused7_IRQn = 7,
|
||||
Unused8_IRQn = 8,
|
||||
Unused9_IRQn = 9,
|
||||
Unused10_IRQn = 10,
|
||||
Unused11_IRQn = 11,
|
||||
Unused12_IRQn = 12,
|
||||
Unused13_IRQn = 13,
|
||||
Unused14_IRQn = 14,
|
||||
Unused15_IRQn = 15,
|
||||
Unused16_IRQn = 16,
|
||||
Unused17_IRQn = 17,
|
||||
Unused18_IRQn = 18,
|
||||
Unused19_IRQn = 19,
|
||||
Unused20_IRQn = 20,
|
||||
Unused21_IRQn = 21,
|
||||
Unused22_IRQn = 22,
|
||||
Unused23_IRQn = 23,
|
||||
Unused24_IRQn = 24,
|
||||
Unused25_IRQn = 25,
|
||||
Unused26_IRQn = 26,
|
||||
Unused27_IRQn = 27,
|
||||
Unused28_IRQn = 28,
|
||||
Unused29_IRQn = 29,
|
||||
Unused30_IRQn = 30,
|
||||
Unused31_IRQn = 31,
|
||||
} IRQn_Type;
|
||||
|
||||
|
||||
/* ================================================================================ */
|
||||
/* ================ Processor and Core Peripheral Section ================ */
|
||||
/* ================================================================================ */
|
||||
|
||||
/* -------- Configuration of the Cortex-M0 Processor and Core Peripherals ------- */
|
||||
#define __CM1_REV 0x0000 /* Core revision r0p0 */
|
||||
#define __MPU_PRESENT 0 /* MPU present or not */
|
||||
#define __NVIC_PRIO_BITS 2 /* Number of Bits used for Priority Levels */
|
||||
#define __Vendor_SysTickConfig 1 /* Set to 1 if different SysTick Config is used */
|
||||
|
||||
#include <core_cm1.h> /* Processor and core peripherals */
|
||||
|
||||
/* ================================================================================ */
|
||||
/* ================ Device Specific Peripheral Section ================ */
|
||||
/* ================================================================================ */
|
||||
|
||||
/* ------------------- Start of section using anonymous unions ------------------ */
|
||||
#if defined ( __CC_ARM )
|
||||
#pragma push
|
||||
#pragma anon_unions
|
||||
#elif defined(__ICCARM__)
|
||||
#pragma language=extended
|
||||
#elif defined(__GNUC__)
|
||||
/* anonymous unions are enabled by default */
|
||||
#elif defined(__TMS470__)
|
||||
/* anonymous unions are enabled by default */
|
||||
#elif defined(__TASKING__)
|
||||
#pragma warning 586
|
||||
#else
|
||||
#warning Not supported compiler type
|
||||
#endif
|
||||
/* -------------------- End of section using anonymous unions ------------------- */
|
||||
|
||||
#if defined ( __CC_ARM )
|
||||
#pragma pop
|
||||
#elif defined(__ICCARM__)
|
||||
/* leave anonymous unions enabled */
|
||||
#elif defined(__GNUC__)
|
||||
/* anonymous unions are enabled by default */
|
||||
#elif defined(__TMS470__)
|
||||
/* anonymous unions are enabled by default */
|
||||
#elif defined(__TASKING__)
|
||||
#pragma warning restore
|
||||
#else
|
||||
#warning Not supported compiler type
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
692
arm/hal/cmsis/core_cm1.h
Normal file
692
arm/hal/cmsis/core_cm1.h
Normal file
@ -0,0 +1,692 @@
|
||||
/**************************************************************************//**
|
||||
* @file core_cm1.h
|
||||
* @brief CMSIS Cortex-M1 Core Peripheral Access Layer Header File
|
||||
* @version V3.20
|
||||
* @date 19. April 2018
|
||||
*
|
||||
* @note
|
||||
*
|
||||
******************************************************************************/
|
||||
/* Copyright (c) 2009 - 2018 ARM LIMITED
|
||||
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
- Neither the name of ARM nor the names of its contributors may be used
|
||||
to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
*
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
---------------------------------------------------------------------------*/
|
||||
|
||||
|
||||
#if defined ( __ICCARM__ )
|
||||
#pragma system_include /* treat file as system include file for MISRA check */
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#ifndef __CORE_CM1_H_GENERIC
|
||||
#define __CORE_CM1_H_GENERIC
|
||||
|
||||
/** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions
|
||||
CMSIS violates the following MISRA-C:2004 rules:
|
||||
|
||||
\li Required Rule 8.5, object/function definition in header file.<br>
|
||||
Function definitions in header files are used to allow 'inlining'.
|
||||
|
||||
\li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br>
|
||||
Unions are used for effective representation of core registers.
|
||||
|
||||
\li Advisory Rule 19.7, Function-like macro defined.<br>
|
||||
Function-like macros are used to allow more efficient code.
|
||||
*/
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
* CMSIS definitions
|
||||
******************************************************************************/
|
||||
/** \ingroup Cortex_M0
|
||||
@{
|
||||
*/
|
||||
|
||||
/* CMSIS CM1 definitions */
|
||||
#define __CM1_CMSIS_VERSION_MAIN (0x03) /*!< [31:16] CMSIS HAL main version */
|
||||
#define __CM1_CMSIS_VERSION_SUB (0x20) /*!< [15:0] CMSIS HAL sub version */
|
||||
#define __CM1_CMSIS_VERSION ((__CM1_CMSIS_VERSION_MAIN << 16) | \
|
||||
__CM1_CMSIS_VERSION_SUB ) /*!< CMSIS HAL version number */
|
||||
|
||||
#define __CORTEX_M (0x00) /*!< Cortex-M Core */
|
||||
|
||||
|
||||
#if defined ( __CC_ARM )
|
||||
#define __ASM __asm /*!< asm keyword for ARM Compiler */
|
||||
#define __INLINE __inline /*!< inline keyword for ARM Compiler */
|
||||
#define __STATIC_INLINE static __inline
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
#define __ASM __asm /*!< asm keyword for IAR Compiler */
|
||||
#define __INLINE inline /*!< inline keyword for IAR Compiler. Only available in High optimization mode! */
|
||||
#define __STATIC_INLINE static inline
|
||||
|
||||
#elif defined ( __GNUC__ )
|
||||
#define __ASM __asm /*!< asm keyword for GNU Compiler */
|
||||
#define __INLINE inline /*!< inline keyword for GNU Compiler */
|
||||
#define __STATIC_INLINE static inline
|
||||
|
||||
#elif defined ( __TASKING__ )
|
||||
#define __ASM __asm /*!< asm keyword for TASKING Compiler */
|
||||
#define __INLINE inline /*!< inline keyword for TASKING Compiler */
|
||||
#define __STATIC_INLINE static inline
|
||||
|
||||
#endif
|
||||
|
||||
/** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all
|
||||
*/
|
||||
#define __FPU_USED 0
|
||||
|
||||
#if defined ( __CC_ARM )
|
||||
#if defined __TARGET_FPU_VFP
|
||||
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
|
||||
#endif
|
||||
|
||||
#elif defined ( __ICCARM__ )
|
||||
#if defined __ARMVFP__
|
||||
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
|
||||
#endif
|
||||
|
||||
#elif defined ( __GNUC__ )
|
||||
#if defined (__VFP_FP__) && !defined(__SOFTFP__)
|
||||
#warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
|
||||
#endif
|
||||
|
||||
#elif defined ( __TASKING__ )
|
||||
#if defined __FPU_VFP__
|
||||
#error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#include <stdint.h> /* standard types definitions */
|
||||
#include <core_cmInstr.h> /* Core Instruction Access */
|
||||
#include <core_cmFunc.h> /* Core Function Access */
|
||||
|
||||
#endif /* __CORE_CM1_H_GENERIC */
|
||||
|
||||
#ifndef __CMSIS_GENERIC
|
||||
|
||||
#ifndef __CORE_CM1_H_DEPENDANT
|
||||
#define __CORE_CM1_H_DEPENDANT
|
||||
|
||||
/* check device defines and use defaults */
|
||||
#if defined __CHECK_DEVICE_DEFINES
|
||||
#ifndef __CM1_REV
|
||||
#define __CM1_REV 0x0000
|
||||
#warning "__CM1_REV not defined in device header file; using default!"
|
||||
#endif
|
||||
|
||||
#ifndef __NVIC_PRIO_BITS
|
||||
#define __NVIC_PRIO_BITS 2
|
||||
#warning "__NVIC_PRIO_BITS not defined in device header file; using default!"
|
||||
#endif
|
||||
|
||||
#ifndef __Vendor_SysTickConfig
|
||||
#define __Vendor_SysTickConfig 0
|
||||
#warning "__Vendor_SysTickConfig not defined in device header file; using default!"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* IO definitions (access restrictions to peripheral registers) */
|
||||
/**
|
||||
\defgroup CMSIS_glob_defs CMSIS Global Defines
|
||||
|
||||
<strong>IO Type Qualifiers</strong> are used
|
||||
\li to specify the access to peripheral variables.
|
||||
\li for automatic generation of peripheral register debug information.
|
||||
*/
|
||||
#ifdef __cplusplus
|
||||
#define __I volatile /*!< Defines 'read only' permissions */
|
||||
#else
|
||||
#define __I volatile const /*!< Defines 'read only' permissions */
|
||||
#endif
|
||||
#define __O volatile /*!< Defines 'write only' permissions */
|
||||
#define __IO volatile /*!< Defines 'read / write' permissions */
|
||||
|
||||
/*@} end of group Cortex_M0 */
|
||||
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
* Register Abstraction
|
||||
Core Register contain:
|
||||
- Core Register
|
||||
- Core NVIC Register
|
||||
- Core SCB Register
|
||||
- Core SysTick Register
|
||||
******************************************************************************/
|
||||
/** \defgroup CMSIS_core_register Defines and Type Definitions
|
||||
\brief Type definitions and defines for Cortex-M processor based devices.
|
||||
*/
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_CORE Status and Control Registers
|
||||
\brief Core Register type definitions.
|
||||
@{
|
||||
*/
|
||||
|
||||
/** \brief Union type to access the Application Program Status Register (APSR).
|
||||
*/
|
||||
typedef union
|
||||
{
|
||||
struct
|
||||
{
|
||||
#if (__CORTEX_M != 0x04)
|
||||
uint32_t _reserved0:27; /*!< bit: 0..26 Reserved */
|
||||
#else
|
||||
uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */
|
||||
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
|
||||
uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */
|
||||
#endif
|
||||
uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
|
||||
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
|
||||
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
|
||||
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
|
||||
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
|
||||
} b; /*!< Structure used for bit access */
|
||||
uint32_t w; /*!< Type used for word access */
|
||||
} APSR_Type;
|
||||
|
||||
|
||||
/** \brief Union type to access the Interrupt Program Status Register (IPSR).
|
||||
*/
|
||||
typedef union
|
||||
{
|
||||
struct
|
||||
{
|
||||
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
|
||||
uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */
|
||||
} b; /*!< Structure used for bit access */
|
||||
uint32_t w; /*!< Type used for word access */
|
||||
} IPSR_Type;
|
||||
|
||||
|
||||
/** \brief Union type to access the Special-Purpose Program Status Registers (xPSR).
|
||||
*/
|
||||
typedef union
|
||||
{
|
||||
struct
|
||||
{
|
||||
uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */
|
||||
#if (__CORTEX_M != 0x04)
|
||||
uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */
|
||||
#else
|
||||
uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */
|
||||
uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */
|
||||
uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */
|
||||
#endif
|
||||
uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */
|
||||
uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */
|
||||
uint32_t Q:1; /*!< bit: 27 Saturation condition flag */
|
||||
uint32_t V:1; /*!< bit: 28 Overflow condition code flag */
|
||||
uint32_t C:1; /*!< bit: 29 Carry condition code flag */
|
||||
uint32_t Z:1; /*!< bit: 30 Zero condition code flag */
|
||||
uint32_t N:1; /*!< bit: 31 Negative condition code flag */
|
||||
} b; /*!< Structure used for bit access */
|
||||
uint32_t w; /*!< Type used for word access */
|
||||
} xPSR_Type;
|
||||
|
||||
|
||||
/** \brief Union type to access the Control Registers (CONTROL).
|
||||
*/
|
||||
typedef union
|
||||
{
|
||||
struct
|
||||
{
|
||||
uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */
|
||||
uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */
|
||||
uint32_t FPCA:1; /*!< bit: 2 FP extension active flag */
|
||||
uint32_t _reserved0:29; /*!< bit: 3..31 Reserved */
|
||||
} b; /*!< Structure used for bit access */
|
||||
uint32_t w; /*!< Type used for word access */
|
||||
} CONTROL_Type;
|
||||
|
||||
/*@} end of group CMSIS_CORE */
|
||||
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC)
|
||||
\brief Type definitions for the NVIC Registers
|
||||
@{
|
||||
*/
|
||||
|
||||
/** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC).
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
__IO uint32_t ISER[1]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */
|
||||
uint32_t RESERVED0[31];
|
||||
__IO uint32_t ICER[1]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */
|
||||
uint32_t RSERVED1[31];
|
||||
__IO uint32_t ISPR[1]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */
|
||||
uint32_t RESERVED2[31];
|
||||
__IO uint32_t ICPR[1]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */
|
||||
uint32_t RESERVED3[31];
|
||||
uint32_t RESERVED4[64];
|
||||
__IO uint32_t IP[8]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */
|
||||
} NVIC_Type;
|
||||
|
||||
/*@} end of group CMSIS_NVIC */
|
||||
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_SCB System Control Block (SCB)
|
||||
\brief Type definitions for the System Control Block Registers
|
||||
@{
|
||||
*/
|
||||
|
||||
/** \brief Structure type to access the System Control Block (SCB).
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
__I uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */
|
||||
__IO uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */
|
||||
uint32_t RESERVED0;
|
||||
__IO uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */
|
||||
__IO uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */
|
||||
__IO uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */
|
||||
uint32_t RESERVED1;
|
||||
__IO uint32_t SHP[2]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */
|
||||
__IO uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */
|
||||
} SCB_Type;
|
||||
|
||||
/* SCB CPUID Register Definitions */
|
||||
#define SCB_CPUID_IMPLEMENTER_Pos 24 /*!< SCB CPUID: IMPLEMENTER Position */
|
||||
#define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */
|
||||
|
||||
#define SCB_CPUID_VARIANT_Pos 20 /*!< SCB CPUID: VARIANT Position */
|
||||
#define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */
|
||||
|
||||
#define SCB_CPUID_ARCHITECTURE_Pos 16 /*!< SCB CPUID: ARCHITECTURE Position */
|
||||
#define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */
|
||||
|
||||
#define SCB_CPUID_PARTNO_Pos 4 /*!< SCB CPUID: PARTNO Position */
|
||||
#define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */
|
||||
|
||||
#define SCB_CPUID_REVISION_Pos 0 /*!< SCB CPUID: REVISION Position */
|
||||
#define SCB_CPUID_REVISION_Msk (0xFUL << SCB_CPUID_REVISION_Pos) /*!< SCB CPUID: REVISION Mask */
|
||||
|
||||
/* SCB Interrupt Control State Register Definitions */
|
||||
#define SCB_ICSR_NMIPENDSET_Pos 31 /*!< SCB ICSR: NMIPENDSET Position */
|
||||
#define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */
|
||||
|
||||
#define SCB_ICSR_PENDSVSET_Pos 28 /*!< SCB ICSR: PENDSVSET Position */
|
||||
#define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */
|
||||
|
||||
#define SCB_ICSR_PENDSVCLR_Pos 27 /*!< SCB ICSR: PENDSVCLR Position */
|
||||
#define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */
|
||||
|
||||
#define SCB_ICSR_PENDSTSET_Pos 26 /*!< SCB ICSR: PENDSTSET Position */
|
||||
#define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */
|
||||
|
||||
#define SCB_ICSR_PENDSTCLR_Pos 25 /*!< SCB ICSR: PENDSTCLR Position */
|
||||
#define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */
|
||||
|
||||
#define SCB_ICSR_ISRPREEMPT_Pos 23 /*!< SCB ICSR: ISRPREEMPT Position */
|
||||
#define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */
|
||||
|
||||
#define SCB_ICSR_ISRPENDING_Pos 22 /*!< SCB ICSR: ISRPENDING Position */
|
||||
#define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */
|
||||
|
||||
#define SCB_ICSR_VECTPENDING_Pos 12 /*!< SCB ICSR: VECTPENDING Position */
|
||||
#define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */
|
||||
|
||||
#define SCB_ICSR_VECTACTIVE_Pos 0 /*!< SCB ICSR: VECTACTIVE Position */
|
||||
#define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL << SCB_ICSR_VECTACTIVE_Pos) /*!< SCB ICSR: VECTACTIVE Mask */
|
||||
|
||||
/* SCB Application Interrupt and Reset Control Register Definitions */
|
||||
#define SCB_AIRCR_VECTKEY_Pos 16 /*!< SCB AIRCR: VECTKEY Position */
|
||||
#define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */
|
||||
|
||||
#define SCB_AIRCR_VECTKEYSTAT_Pos 16 /*!< SCB AIRCR: VECTKEYSTAT Position */
|
||||
#define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */
|
||||
|
||||
#define SCB_AIRCR_ENDIANESS_Pos 15 /*!< SCB AIRCR: ENDIANESS Position */
|
||||
#define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */
|
||||
|
||||
#define SCB_AIRCR_SYSRESETREQ_Pos 2 /*!< SCB AIRCR: SYSRESETREQ Position */
|
||||
#define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */
|
||||
|
||||
#define SCB_AIRCR_VECTCLRACTIVE_Pos 1 /*!< SCB AIRCR: VECTCLRACTIVE Position */
|
||||
#define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */
|
||||
|
||||
/* SCB System Control Register Definitions */
|
||||
#define SCB_SCR_SEVONPEND_Pos 4 /*!< SCB SCR: SEVONPEND Position */
|
||||
#define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */
|
||||
|
||||
#define SCB_SCR_SLEEPDEEP_Pos 2 /*!< SCB SCR: SLEEPDEEP Position */
|
||||
#define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */
|
||||
|
||||
#define SCB_SCR_SLEEPONEXIT_Pos 1 /*!< SCB SCR: SLEEPONEXIT Position */
|
||||
#define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */
|
||||
|
||||
/* SCB Configuration Control Register Definitions */
|
||||
#define SCB_CCR_STKALIGN_Pos 9 /*!< SCB CCR: STKALIGN Position */
|
||||
#define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */
|
||||
|
||||
#define SCB_CCR_UNALIGN_TRP_Pos 3 /*!< SCB CCR: UNALIGN_TRP Position */
|
||||
#define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */
|
||||
|
||||
/* SCB System Handler Control and State Register Definitions */
|
||||
#define SCB_SHCSR_SVCALLPENDED_Pos 15 /*!< SCB SHCSR: SVCALLPENDED Position */
|
||||
#define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */
|
||||
|
||||
/*@} end of group CMSIS_SCB */
|
||||
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_SysTick System Tick Timer (SysTick)
|
||||
\brief Type definitions for the System Timer Registers.
|
||||
@{
|
||||
*/
|
||||
|
||||
/** \brief Structure type to access the System Timer (SysTick).
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
__IO uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */
|
||||
__IO uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */
|
||||
__IO uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */
|
||||
__I uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */
|
||||
} SysTick_Type;
|
||||
|
||||
/* SysTick Control / Status Register Definitions */
|
||||
#define SysTick_CTRL_COUNTFLAG_Pos 16 /*!< SysTick CTRL: COUNTFLAG Position */
|
||||
#define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */
|
||||
|
||||
#define SysTick_CTRL_CLKSOURCE_Pos 2 /*!< SysTick CTRL: CLKSOURCE Position */
|
||||
#define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */
|
||||
|
||||
#define SysTick_CTRL_TICKINT_Pos 1 /*!< SysTick CTRL: TICKINT Position */
|
||||
#define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */
|
||||
|
||||
#define SysTick_CTRL_ENABLE_Pos 0 /*!< SysTick CTRL: ENABLE Position */
|
||||
#define SysTick_CTRL_ENABLE_Msk (1UL << SysTick_CTRL_ENABLE_Pos) /*!< SysTick CTRL: ENABLE Mask */
|
||||
|
||||
/* SysTick Reload Register Definitions */
|
||||
#define SysTick_LOAD_RELOAD_Pos 0 /*!< SysTick LOAD: RELOAD Position */
|
||||
#define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL << SysTick_LOAD_RELOAD_Pos) /*!< SysTick LOAD: RELOAD Mask */
|
||||
|
||||
/* SysTick Current Register Definitions */
|
||||
#define SysTick_VAL_CURRENT_Pos 0 /*!< SysTick VAL: CURRENT Position */
|
||||
#define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick VAL: CURRENT Mask */
|
||||
|
||||
/* SysTick Calibration Register Definitions */
|
||||
#define SysTick_CALIB_NOREF_Pos 31 /*!< SysTick CALIB: NOREF Position */
|
||||
#define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */
|
||||
|
||||
#define SysTick_CALIB_SKEW_Pos 30 /*!< SysTick CALIB: SKEW Position */
|
||||
#define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */
|
||||
|
||||
#define SysTick_CALIB_TENMS_Pos 0 /*!< SysTick CALIB: TENMS Position */
|
||||
#define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL << SysTick_VAL_CURRENT_Pos) /*!< SysTick CALIB: TENMS Mask */
|
||||
|
||||
/*@} end of group CMSIS_SysTick */
|
||||
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug)
|
||||
\brief Cortex-M1 Core Debug Registers (DCB registers, SHCSR, and DFSR)
|
||||
are only accessible over DAP and not via processor. Therefore
|
||||
they are not covered by the Cortex-M1 header file.
|
||||
@{
|
||||
*/
|
||||
/*@} end of group CMSIS_CoreDebug */
|
||||
|
||||
|
||||
/** \ingroup CMSIS_core_register
|
||||
\defgroup CMSIS_core_base Core Definitions
|
||||
\brief Definitions for base addresses, unions, and structures.
|
||||
@{
|
||||
*/
|
||||
|
||||
/* Memory mapping of Cortex-M1 Hardware */
|
||||
#define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */
|
||||
#define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */
|
||||
#define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */
|
||||
#define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */
|
||||
|
||||
#define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */
|
||||
#define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */
|
||||
#define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */
|
||||
|
||||
|
||||
/*@} */
|
||||
|
||||
|
||||
|
||||
/*******************************************************************************
|
||||
* Hardware Abstraction Layer
|
||||
Core Function Interface contains:
|
||||
- Core NVIC Functions
|
||||
- Core SysTick Functions
|
||||
- Core Register Access Functions
|
||||
******************************************************************************/
|
||||
/** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference
|
||||
*/
|
||||
|
||||
|
||||
|
||||
/* ########################## NVIC functions #################################### */
|
||||
/** \ingroup CMSIS_Core_FunctionInterface
|
||||
\defgroup CMSIS_Core_NVICFunctions NVIC Functions
|
||||
\brief Functions that manage interrupts and exceptions via the NVIC.
|
||||
@{
|
||||
*/
|
||||
|
||||
/* Interrupt Priorities are WORD accessible only under ARMv6M */
|
||||
/* The following MACROS handle generation of the register offset and byte masks */
|
||||
#define _BIT_SHIFT(IRQn) ( (((uint32_t)(IRQn) ) & 0x03) * 8 )
|
||||
#define _SHP_IDX(IRQn) ( ((((uint32_t)(IRQn) & 0x0F)-8) >> 2) )
|
||||
#define _IP_IDX(IRQn) ( ((uint32_t)(IRQn) >> 2) )
|
||||
|
||||
|
||||
/** \brief Enable External Interrupt
|
||||
|
||||
The function enables a device-specific interrupt in the NVIC interrupt controller.
|
||||
|
||||
\param [in] IRQn External interrupt number. Value cannot be negative.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_EnableIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
NVIC->ISER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
|
||||
}
|
||||
|
||||
|
||||
/** \brief Disable External Interrupt
|
||||
|
||||
The function disables a device-specific interrupt in the NVIC interrupt controller.
|
||||
|
||||
\param [in] IRQn External interrupt number. Value cannot be negative.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_DisableIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
NVIC->ICER[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Pending Interrupt
|
||||
|
||||
The function reads the pending register in the NVIC and returns the pending bit
|
||||
for the specified interrupt.
|
||||
|
||||
\param [in] IRQn Interrupt number.
|
||||
|
||||
\return 0 Interrupt status is not pending.
|
||||
\return 1 Interrupt status is pending.
|
||||
*/
|
||||
__STATIC_INLINE uint32_t NVIC_GetPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
return((uint32_t) ((NVIC->ISPR[0] & (1 << ((uint32_t)(IRQn) & 0x1F)))?1:0));
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Pending Interrupt
|
||||
|
||||
The function sets the pending bit of an external interrupt.
|
||||
|
||||
\param [in] IRQn Interrupt number. Value cannot be negative.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_SetPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
NVIC->ISPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F));
|
||||
}
|
||||
|
||||
|
||||
/** \brief Clear Pending Interrupt
|
||||
|
||||
The function clears the pending bit of an external interrupt.
|
||||
|
||||
\param [in] IRQn External interrupt number. Value cannot be negative.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_ClearPendingIRQ(IRQn_Type IRQn)
|
||||
{
|
||||
NVIC->ICPR[0] = (1 << ((uint32_t)(IRQn) & 0x1F)); /* Clear pending interrupt */
|
||||
}
|
||||
|
||||
|
||||
/** \brief Clear All Pending Interrupts
|
||||
|
||||
The function clears all pending bits.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_ClearAllPendingIRQ(void)
|
||||
{
|
||||
NVIC->ICPR[0] = 0xFFFFFFFF; /* Clear all pending interrupts */
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Interrupt Priority
|
||||
|
||||
The function sets the priority of an interrupt.
|
||||
|
||||
\note The priority cannot be set for every core interrupt.
|
||||
|
||||
\param [in] IRQn Interrupt number.
|
||||
\param [in] priority Priority to set.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority)
|
||||
{
|
||||
if(IRQn < 0) {
|
||||
SCB->SHP[_SHP_IDX(IRQn)] = (SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
|
||||
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
|
||||
else {
|
||||
NVIC->IP[_IP_IDX(IRQn)] = (NVIC->IP[_IP_IDX(IRQn)] & ~(0xFF << _BIT_SHIFT(IRQn))) |
|
||||
(((priority << (8 - __NVIC_PRIO_BITS)) & 0xFF) << _BIT_SHIFT(IRQn)); }
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Interrupt Priority
|
||||
|
||||
The function reads the priority of an interrupt. The interrupt
|
||||
number can be positive to specify an external (device specific)
|
||||
interrupt, or negative to specify an internal (core) interrupt.
|
||||
|
||||
|
||||
\param [in] IRQn Interrupt number.
|
||||
\return Interrupt Priority. Value is aligned automatically to the implemented
|
||||
priority bits of the microcontroller.
|
||||
*/
|
||||
__STATIC_INLINE uint32_t NVIC_GetPriority(IRQn_Type IRQn)
|
||||
{
|
||||
|
||||
if(IRQn < 0) {
|
||||
return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & 0xFF) >> (8 - __NVIC_PRIO_BITS))); } /* get priority for Cortex-M0 system interrupts */
|
||||
else {
|
||||
return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & 0xFF) >> (8 - __NVIC_PRIO_BITS))); } /* get priority for device specific interrupts */
|
||||
}
|
||||
|
||||
|
||||
/** \brief System Reset
|
||||
|
||||
The function initiates a system reset request to reset the MCU.
|
||||
*/
|
||||
__STATIC_INLINE void NVIC_SystemReset(void)
|
||||
{
|
||||
__DSB(); /* Ensure all outstanding memory accesses included
|
||||
buffered write are completed before reset */
|
||||
SCB->AIRCR = ((0x5FA << SCB_AIRCR_VECTKEY_Pos) |
|
||||
SCB_AIRCR_SYSRESETREQ_Msk);
|
||||
__DSB(); /* Ensure completion of memory access */
|
||||
while(1); /* wait until reset */
|
||||
}
|
||||
|
||||
/*@} end of CMSIS_Core_NVICFunctions */
|
||||
|
||||
|
||||
|
||||
/* ################################## SysTick function ############################################ */
|
||||
/** \ingroup CMSIS_Core_FunctionInterface
|
||||
\defgroup CMSIS_Core_SysTickFunctions SysTick Functions
|
||||
\brief Functions that configure the System.
|
||||
@{
|
||||
*/
|
||||
|
||||
#if (__Vendor_SysTickConfig == 0)
|
||||
|
||||
/** \brief System Tick Configuration
|
||||
|
||||
The function initializes the System Timer and its interrupt, and starts the System Tick Timer.
|
||||
Counter is in free running mode to generate periodic interrupts.
|
||||
|
||||
\param [in] ticks Number of ticks between two interrupts.
|
||||
|
||||
\return 0 Function succeeded.
|
||||
\return 1 Function failed.
|
||||
|
||||
\note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the
|
||||
function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b>
|
||||
must contain a vendor-specific implementation of this function.
|
||||
|
||||
*/
|
||||
__STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks)
|
||||
{
|
||||
if ((ticks - 1) > SysTick_LOAD_RELOAD_Msk) return (1); /* Reload value impossible */
|
||||
|
||||
SysTick->LOAD = ticks - 1; /* set reload register */
|
||||
NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Systick Interrupt */
|
||||
SysTick->VAL = 0; /* Load the SysTick Counter Value */
|
||||
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
|
||||
SysTick_CTRL_TICKINT_Msk |
|
||||
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
|
||||
return (0); /* Function successful */
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/*@} end of CMSIS_Core_SysTickFunctions */
|
||||
|
||||
|
||||
|
||||
|
||||
#endif /* __CORE_CM1_H_DEPENDANT */
|
||||
|
||||
#endif /* __CMSIS_GENERIC */
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
636
arm/hal/cmsis/core_cmFunc.h
Normal file
636
arm/hal/cmsis/core_cmFunc.h
Normal file
@ -0,0 +1,636 @@
|
||||
/**************************************************************************//**
|
||||
* @file core_cmFunc.h
|
||||
* @brief CMSIS Cortex-M Core Function Access Header File
|
||||
* @version V3.20
|
||||
* @date 25. February 2013
|
||||
*
|
||||
* @note
|
||||
*
|
||||
******************************************************************************/
|
||||
/* Copyright (c) 2009 - 2013 ARM LIMITED
|
||||
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
- Neither the name of ARM nor the names of its contributors may be used
|
||||
to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
*
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
---------------------------------------------------------------------------*/
|
||||
|
||||
|
||||
#ifndef __CORE_CMFUNC_H
|
||||
#define __CORE_CMFUNC_H
|
||||
|
||||
|
||||
/* ########################### Core Function Access ########################### */
|
||||
/** \ingroup CMSIS_Core_FunctionInterface
|
||||
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
|
||||
@{
|
||||
*/
|
||||
|
||||
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
|
||||
/* ARM armcc specific functions */
|
||||
|
||||
#if (__ARMCC_VERSION < 400677)
|
||||
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
|
||||
#endif
|
||||
|
||||
/* intrinsic void __enable_irq(); */
|
||||
/* intrinsic void __disable_irq(); */
|
||||
|
||||
/** \brief Get Control Register
|
||||
|
||||
This function returns the content of the Control Register.
|
||||
|
||||
\return Control Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_CONTROL(void)
|
||||
{
|
||||
uint32_t __regControl __ASM("control");
|
||||
return(__regControl);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Control Register
|
||||
|
||||
This function writes the given value to the Control Register.
|
||||
|
||||
\param [in] control Control Register value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_CONTROL(uint32_t control)
|
||||
{
|
||||
uint32_t __regControl __ASM("control");
|
||||
__regControl = control;
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get IPSR Register
|
||||
|
||||
This function returns the content of the IPSR Register.
|
||||
|
||||
\return IPSR Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_IPSR(void)
|
||||
{
|
||||
uint32_t __regIPSR __ASM("ipsr");
|
||||
return(__regIPSR);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get APSR Register
|
||||
|
||||
This function returns the content of the APSR Register.
|
||||
|
||||
\return APSR Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_APSR(void)
|
||||
{
|
||||
uint32_t __regAPSR __ASM("apsr");
|
||||
return(__regAPSR);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get xPSR Register
|
||||
|
||||
This function returns the content of the xPSR Register.
|
||||
|
||||
\return xPSR Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_xPSR(void)
|
||||
{
|
||||
uint32_t __regXPSR __ASM("xpsr");
|
||||
return(__regXPSR);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Process Stack Pointer
|
||||
|
||||
This function returns the current value of the Process Stack Pointer (PSP).
|
||||
|
||||
\return PSP Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_PSP(void)
|
||||
{
|
||||
uint32_t __regProcessStackPointer __ASM("psp");
|
||||
return(__regProcessStackPointer);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Process Stack Pointer
|
||||
|
||||
This function assigns the given value to the Process Stack Pointer (PSP).
|
||||
|
||||
\param [in] topOfProcStack Process Stack Pointer value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
|
||||
{
|
||||
uint32_t __regProcessStackPointer __ASM("psp");
|
||||
__regProcessStackPointer = topOfProcStack;
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Main Stack Pointer
|
||||
|
||||
This function returns the current value of the Main Stack Pointer (MSP).
|
||||
|
||||
\return MSP Register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_MSP(void)
|
||||
{
|
||||
uint32_t __regMainStackPointer __ASM("msp");
|
||||
return(__regMainStackPointer);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Main Stack Pointer
|
||||
|
||||
This function assigns the given value to the Main Stack Pointer (MSP).
|
||||
|
||||
\param [in] topOfMainStack Main Stack Pointer value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
|
||||
{
|
||||
uint32_t __regMainStackPointer __ASM("msp");
|
||||
__regMainStackPointer = topOfMainStack;
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Priority Mask
|
||||
|
||||
This function returns the current state of the priority mask bit from the Priority Mask Register.
|
||||
|
||||
\return Priority Mask value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_PRIMASK(void)
|
||||
{
|
||||
uint32_t __regPriMask __ASM("primask");
|
||||
return(__regPriMask);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Priority Mask
|
||||
|
||||
This function assigns the given value to the Priority Mask Register.
|
||||
|
||||
\param [in] priMask Priority Mask
|
||||
*/
|
||||
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
|
||||
{
|
||||
uint32_t __regPriMask __ASM("primask");
|
||||
__regPriMask = (priMask);
|
||||
}
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
/** \brief Enable FIQ
|
||||
|
||||
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
#define __enable_fault_irq __enable_fiq
|
||||
|
||||
|
||||
/** \brief Disable FIQ
|
||||
|
||||
This function disables FIQ interrupts by setting the F-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
#define __disable_fault_irq __disable_fiq
|
||||
|
||||
|
||||
/** \brief Get Base Priority
|
||||
|
||||
This function returns the current value of the Base Priority register.
|
||||
|
||||
\return Base Priority register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_BASEPRI(void)
|
||||
{
|
||||
uint32_t __regBasePri __ASM("basepri");
|
||||
return(__regBasePri);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Base Priority
|
||||
|
||||
This function assigns the given value to the Base Priority register.
|
||||
|
||||
\param [in] basePri Base Priority value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
|
||||
{
|
||||
uint32_t __regBasePri __ASM("basepri");
|
||||
__regBasePri = (basePri & 0xff);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Fault Mask
|
||||
|
||||
This function returns the current value of the Fault Mask register.
|
||||
|
||||
\return Fault Mask register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
|
||||
{
|
||||
uint32_t __regFaultMask __ASM("faultmask");
|
||||
return(__regFaultMask);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Fault Mask
|
||||
|
||||
This function assigns the given value to the Fault Mask register.
|
||||
|
||||
\param [in] faultMask Fault Mask value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
|
||||
{
|
||||
uint32_t __regFaultMask __ASM("faultmask");
|
||||
__regFaultMask = (faultMask & (uint32_t)1);
|
||||
}
|
||||
|
||||
#endif /* (__CORTEX_M >= 0x03) */
|
||||
|
||||
|
||||
#if (__CORTEX_M == 0x04)
|
||||
|
||||
/** \brief Get FPSCR
|
||||
|
||||
This function returns the current value of the Floating Point Status/Control register.
|
||||
|
||||
\return Floating Point Status/Control register value
|
||||
*/
|
||||
__STATIC_INLINE uint32_t __get_FPSCR(void)
|
||||
{
|
||||
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
|
||||
uint32_t __regfpscr __ASM("fpscr");
|
||||
return(__regfpscr);
|
||||
#else
|
||||
return(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set FPSCR
|
||||
|
||||
This function assigns the given value to the Floating Point Status/Control register.
|
||||
|
||||
\param [in] fpscr Floating Point Status/Control value to set
|
||||
*/
|
||||
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
|
||||
{
|
||||
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
|
||||
uint32_t __regfpscr __ASM("fpscr");
|
||||
__regfpscr = (fpscr);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* (__CORTEX_M == 0x04) */
|
||||
|
||||
|
||||
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
|
||||
/* IAR iccarm specific functions */
|
||||
|
||||
#include <cmsis_iar.h>
|
||||
|
||||
|
||||
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
|
||||
/* TI CCS specific functions */
|
||||
|
||||
#include <cmsis_ccs.h>
|
||||
|
||||
|
||||
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
|
||||
/* GNU gcc specific functions */
|
||||
|
||||
/** \brief Enable IRQ Interrupts
|
||||
|
||||
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
|
||||
{
|
||||
__ASM volatile ("cpsie i" : : : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Disable IRQ Interrupts
|
||||
|
||||
This function disables IRQ interrupts by setting the I-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
|
||||
{
|
||||
__ASM volatile ("cpsid i" : : : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Control Register
|
||||
|
||||
This function returns the content of the Control Register.
|
||||
|
||||
\return Control Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, control" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Control Register
|
||||
|
||||
This function writes the given value to the Control Register.
|
||||
|
||||
\param [in] control Control Register value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
|
||||
{
|
||||
__ASM volatile ("MSR control, %0" : : "r" (control) : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get IPSR Register
|
||||
|
||||
This function returns the content of the IPSR Register.
|
||||
|
||||
\return IPSR Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get APSR Register
|
||||
|
||||
This function returns the content of the APSR Register.
|
||||
|
||||
\return APSR Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get xPSR Register
|
||||
|
||||
This function returns the content of the xPSR Register.
|
||||
|
||||
\return xPSR Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Process Stack Pointer
|
||||
|
||||
This function returns the current value of the Process Stack Pointer (PSP).
|
||||
|
||||
\return PSP Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Process Stack Pointer
|
||||
|
||||
This function assigns the given value to the Process Stack Pointer (PSP).
|
||||
|
||||
\param [in] topOfProcStack Process Stack Pointer value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
|
||||
{
|
||||
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) : "sp");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Main Stack Pointer
|
||||
|
||||
This function returns the current value of the Main Stack Pointer (MSP).
|
||||
|
||||
\return MSP Register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Main Stack Pointer
|
||||
|
||||
This function assigns the given value to the Main Stack Pointer (MSP).
|
||||
|
||||
\param [in] topOfMainStack Main Stack Pointer value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
|
||||
{
|
||||
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) : "sp");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Priority Mask
|
||||
|
||||
This function returns the current state of the priority mask bit from the Priority Mask Register.
|
||||
|
||||
\return Priority Mask value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, primask" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Priority Mask
|
||||
|
||||
This function assigns the given value to the Priority Mask Register.
|
||||
|
||||
\param [in] priMask Priority Mask
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
|
||||
{
|
||||
__ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory");
|
||||
}
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
/** \brief Enable FIQ
|
||||
|
||||
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
|
||||
{
|
||||
__ASM volatile ("cpsie f" : : : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Disable FIQ
|
||||
|
||||
This function disables FIQ interrupts by setting the F-bit in the CPSR.
|
||||
Can only be executed in Privileged modes.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
|
||||
{
|
||||
__ASM volatile ("cpsid f" : : : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Base Priority
|
||||
|
||||
This function returns the current value of the Base Priority register.
|
||||
|
||||
\return Base Priority register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Base Priority
|
||||
|
||||
This function assigns the given value to the Base Priority register.
|
||||
|
||||
\param [in] basePri Base Priority value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
|
||||
{
|
||||
__ASM volatile ("MSR basepri, %0" : : "r" (value) : "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Get Fault Mask
|
||||
|
||||
This function returns the current value of the Fault Mask register.
|
||||
|
||||
\return Fault Mask register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set Fault Mask
|
||||
|
||||
This function assigns the given value to the Fault Mask register.
|
||||
|
||||
\param [in] faultMask Fault Mask value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
|
||||
{
|
||||
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory");
|
||||
}
|
||||
|
||||
#endif /* (__CORTEX_M >= 0x03) */
|
||||
|
||||
|
||||
#if (__CORTEX_M == 0x04)
|
||||
|
||||
/** \brief Get FPSCR
|
||||
|
||||
This function returns the current value of the Floating Point Status/Control register.
|
||||
|
||||
\return Floating Point Status/Control register value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
|
||||
{
|
||||
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
|
||||
uint32_t result;
|
||||
|
||||
/* Empty asm statement works as a scheduling barrier */
|
||||
__ASM volatile ("");
|
||||
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
|
||||
__ASM volatile ("");
|
||||
return(result);
|
||||
#else
|
||||
return(0);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** \brief Set FPSCR
|
||||
|
||||
This function assigns the given value to the Floating Point Status/Control register.
|
||||
|
||||
\param [in] fpscr Floating Point Status/Control value to set
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
|
||||
{
|
||||
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
|
||||
/* Empty asm statement works as a scheduling barrier */
|
||||
__ASM volatile ("");
|
||||
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc");
|
||||
__ASM volatile ("");
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* (__CORTEX_M == 0x04) */
|
||||
|
||||
|
||||
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
|
||||
/* TASKING carm specific functions */
|
||||
|
||||
/*
|
||||
* The CMSIS functions have been implemented as intrinsics in the compiler.
|
||||
* Please use "carm -?i" to get an up to date list of all instrinsics,
|
||||
* Including the CMSIS ones.
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
||||
/*@} end of CMSIS_Core_RegAccFunctions */
|
||||
|
||||
|
||||
#endif /* __CORE_CMFUNC_H */
|
688
arm/hal/cmsis/core_cmInstr.h
Normal file
688
arm/hal/cmsis/core_cmInstr.h
Normal file
@ -0,0 +1,688 @@
|
||||
/**************************************************************************//**
|
||||
* @file core_cmInstr.h
|
||||
* @brief CMSIS Cortex-M Core Instruction Access Header File
|
||||
* @version V3.20
|
||||
* @date 05. March 2013
|
||||
*
|
||||
* @note
|
||||
*
|
||||
******************************************************************************/
|
||||
/* Copyright (c) 2009 - 2013 ARM LIMITED
|
||||
|
||||
All rights reserved.
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
- Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
- Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
- Neither the name of ARM nor the names of its contributors may be used
|
||||
to endorse or promote products derived from this software without
|
||||
specific prior written permission.
|
||||
*
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
|
||||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||||
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||||
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||||
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||||
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||||
POSSIBILITY OF SUCH DAMAGE.
|
||||
---------------------------------------------------------------------------*/
|
||||
|
||||
|
||||
#ifndef __CORE_CMINSTR_H
|
||||
#define __CORE_CMINSTR_H
|
||||
|
||||
|
||||
/* ########################## Core Instruction Access ######################### */
|
||||
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
|
||||
Access to dedicated instructions
|
||||
@{
|
||||
*/
|
||||
|
||||
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
|
||||
/* ARM armcc specific functions */
|
||||
|
||||
#if (__ARMCC_VERSION < 400677)
|
||||
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
|
||||
#endif
|
||||
|
||||
|
||||
/** \brief No Operation
|
||||
|
||||
No Operation does nothing. This instruction can be used for code alignment purposes.
|
||||
*/
|
||||
#define __NOP __nop
|
||||
|
||||
|
||||
/** \brief Wait For Interrupt
|
||||
|
||||
Wait For Interrupt is a hint instruction that suspends execution
|
||||
until one of a number of events occurs.
|
||||
*/
|
||||
#define __WFI __wfi
|
||||
|
||||
|
||||
/** \brief Wait For Event
|
||||
|
||||
Wait For Event is a hint instruction that permits the processor to enter
|
||||
a low-power state until one of a number of events occurs.
|
||||
*/
|
||||
#define __WFE __wfe
|
||||
|
||||
|
||||
/** \brief Send Event
|
||||
|
||||
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
||||
*/
|
||||
#define __SEV __sev
|
||||
|
||||
|
||||
/** \brief Instruction Synchronization Barrier
|
||||
|
||||
Instruction Synchronization Barrier flushes the pipeline in the processor,
|
||||
so that all instructions following the ISB are fetched from cache or
|
||||
memory, after the instruction has been completed.
|
||||
*/
|
||||
#define __ISB() __isb(0xF)
|
||||
|
||||
|
||||
/** \brief Data Synchronization Barrier
|
||||
|
||||
This function acts as a special kind of Data Memory Barrier.
|
||||
It completes when all explicit memory accesses before this instruction complete.
|
||||
*/
|
||||
#define __DSB() __dsb(0xF)
|
||||
|
||||
|
||||
/** \brief Data Memory Barrier
|
||||
|
||||
This function ensures the apparent order of the explicit memory operations before
|
||||
and after the instruction, without ensuring their completion.
|
||||
*/
|
||||
#define __DMB() __dmb(0xF)
|
||||
|
||||
|
||||
/** \brief Reverse byte order (32 bit)
|
||||
|
||||
This function reverses the byte order in integer value.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
#define __REV __rev
|
||||
|
||||
|
||||
/** \brief Reverse byte order (16 bit)
|
||||
|
||||
This function reverses the byte order in two unsigned short values.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
#ifndef __NO_EMBEDDED_ASM
|
||||
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
|
||||
{
|
||||
rev16 r0, r0
|
||||
bx lr
|
||||
}
|
||||
#endif
|
||||
|
||||
/** \brief Reverse byte order in signed short value
|
||||
|
||||
This function reverses the byte order in a signed short value with sign extension to integer.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
#ifndef __NO_EMBEDDED_ASM
|
||||
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
|
||||
{
|
||||
revsh r0, r0
|
||||
bx lr
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/** \brief Rotate Right in unsigned value (32 bit)
|
||||
|
||||
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
||||
|
||||
\param [in] value Value to rotate
|
||||
\param [in] value Number of Bits to rotate
|
||||
\return Rotated value
|
||||
*/
|
||||
#define __ROR __ror
|
||||
|
||||
|
||||
/** \brief Breakpoint
|
||||
|
||||
This function causes the processor to enter Debug state.
|
||||
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
|
||||
|
||||
\param [in] value is ignored by the processor.
|
||||
If required, a debugger can use it to store additional information about the breakpoint.
|
||||
*/
|
||||
#define __BKPT(value) __breakpoint(value)
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
/** \brief Reverse bit order of value
|
||||
|
||||
This function reverses the bit order of the given value.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
#define __RBIT __rbit
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (8 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 8 bit value.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint8_t at (*ptr)
|
||||
*/
|
||||
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (16 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 16 bit values.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint16_t at (*ptr)
|
||||
*/
|
||||
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (32 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 32 bit values.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint32_t at (*ptr)
|
||||
*/
|
||||
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
|
||||
|
||||
|
||||
/** \brief STR Exclusive (8 bit)
|
||||
|
||||
This function performs a exclusive STR command for 8 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
#define __STREXB(value, ptr) __strex(value, ptr)
|
||||
|
||||
|
||||
/** \brief STR Exclusive (16 bit)
|
||||
|
||||
This function performs a exclusive STR command for 16 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
#define __STREXH(value, ptr) __strex(value, ptr)
|
||||
|
||||
|
||||
/** \brief STR Exclusive (32 bit)
|
||||
|
||||
This function performs a exclusive STR command for 32 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
#define __STREXW(value, ptr) __strex(value, ptr)
|
||||
|
||||
|
||||
/** \brief Remove the exclusive lock
|
||||
|
||||
This function removes the exclusive lock which is created by LDREX.
|
||||
|
||||
*/
|
||||
#define __CLREX __clrex
|
||||
|
||||
|
||||
/** \brief Signed Saturate
|
||||
|
||||
This function saturates a signed value.
|
||||
|
||||
\param [in] value Value to be saturated
|
||||
\param [in] sat Bit position to saturate to (1..32)
|
||||
\return Saturated value
|
||||
*/
|
||||
#define __SSAT __ssat
|
||||
|
||||
|
||||
/** \brief Unsigned Saturate
|
||||
|
||||
This function saturates an unsigned value.
|
||||
|
||||
\param [in] value Value to be saturated
|
||||
\param [in] sat Bit position to saturate to (0..31)
|
||||
\return Saturated value
|
||||
*/
|
||||
#define __USAT __usat
|
||||
|
||||
|
||||
/** \brief Count leading zeros
|
||||
|
||||
This function counts the number of leading zeros of a data value.
|
||||
|
||||
\param [in] value Value to count the leading zeros
|
||||
\return number of leading zeros in value
|
||||
*/
|
||||
#define __CLZ __clz
|
||||
|
||||
#endif /* (__CORTEX_M >= 0x03) */
|
||||
|
||||
|
||||
|
||||
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
|
||||
/* IAR iccarm specific functions */
|
||||
|
||||
#include <cmsis_iar.h>
|
||||
|
||||
|
||||
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
|
||||
/* TI CCS specific functions */
|
||||
|
||||
#include <cmsis_ccs.h>
|
||||
|
||||
|
||||
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
|
||||
/* GNU gcc specific functions */
|
||||
|
||||
/* Define macros for porting to both thumb1 and thumb2.
|
||||
* For thumb1, use low register (r0-r7), specified by constrant "l"
|
||||
* Otherwise, use general registers, specified by constrant "r" */
|
||||
#if defined (__thumb__) && !defined (__thumb2__)
|
||||
#define __CMSIS_GCC_OUT_REG(r) "=l" (r)
|
||||
#define __CMSIS_GCC_USE_REG(r) "l" (r)
|
||||
#else
|
||||
#define __CMSIS_GCC_OUT_REG(r) "=r" (r)
|
||||
#define __CMSIS_GCC_USE_REG(r) "r" (r)
|
||||
#endif
|
||||
|
||||
/** \brief No Operation
|
||||
|
||||
No Operation does nothing. This instruction can be used for code alignment purposes.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
|
||||
{
|
||||
__ASM volatile ("nop");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Wait For Interrupt
|
||||
|
||||
Wait For Interrupt is a hint instruction that suspends execution
|
||||
until one of a number of events occurs.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
|
||||
{
|
||||
__ASM volatile ("wfi");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Wait For Event
|
||||
|
||||
Wait For Event is a hint instruction that permits the processor to enter
|
||||
a low-power state until one of a number of events occurs.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
|
||||
{
|
||||
__ASM volatile ("wfe");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Send Event
|
||||
|
||||
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
|
||||
{
|
||||
__ASM volatile ("sev");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Instruction Synchronization Barrier
|
||||
|
||||
Instruction Synchronization Barrier flushes the pipeline in the processor,
|
||||
so that all instructions following the ISB are fetched from cache or
|
||||
memory, after the instruction has been completed.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
|
||||
{
|
||||
__ASM volatile ("isb");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Data Synchronization Barrier
|
||||
|
||||
This function acts as a special kind of Data Memory Barrier.
|
||||
It completes when all explicit memory accesses before this instruction complete.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
|
||||
{
|
||||
__ASM volatile ("dsb");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Data Memory Barrier
|
||||
|
||||
This function ensures the apparent order of the explicit memory operations before
|
||||
and after the instruction, without ensuring their completion.
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
|
||||
{
|
||||
__ASM volatile ("dmb");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Reverse byte order (32 bit)
|
||||
|
||||
This function reverses the byte order in integer value.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
|
||||
{
|
||||
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)
|
||||
return __builtin_bswap32(value);
|
||||
#else
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
||||
return(result);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** \brief Reverse byte order (16 bit)
|
||||
|
||||
This function reverses the byte order in two unsigned short values.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Reverse byte order in signed short value
|
||||
|
||||
This function reverses the byte order in a signed short value with sign extension to integer.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
|
||||
{
|
||||
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
||||
return (short)__builtin_bswap16(value);
|
||||
#else
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) );
|
||||
return(result);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/** \brief Rotate Right in unsigned value (32 bit)
|
||||
|
||||
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
|
||||
|
||||
\param [in] value Value to rotate
|
||||
\param [in] value Number of Bits to rotate
|
||||
\return Rotated value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
|
||||
{
|
||||
return (op1 >> op2) | (op1 << (32 - op2));
|
||||
}
|
||||
|
||||
|
||||
/** \brief Breakpoint
|
||||
|
||||
This function causes the processor to enter Debug state.
|
||||
Debug tools can use this to investigate system state when the instruction at a particular address is reached.
|
||||
|
||||
\param [in] value is ignored by the processor.
|
||||
If required, a debugger can use it to store additional information about the breakpoint.
|
||||
*/
|
||||
#define __BKPT(value) __ASM volatile ("bkpt "#value)
|
||||
|
||||
|
||||
#if (__CORTEX_M >= 0x03)
|
||||
|
||||
/** \brief Reverse bit order of value
|
||||
|
||||
This function reverses the bit order of the given value.
|
||||
|
||||
\param [in] value Value to reverse
|
||||
\return Reversed value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (8 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 8 bit value.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint8_t at (*ptr)
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
||||
__ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) );
|
||||
#else
|
||||
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
||||
accepted by assembler. So has to use following less efficient pattern.
|
||||
*/
|
||||
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
||||
#endif
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (16 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 16 bit values.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint16_t at (*ptr)
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)
|
||||
__ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) );
|
||||
#else
|
||||
/* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not
|
||||
accepted by assembler. So has to use following less efficient pattern.
|
||||
*/
|
||||
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" );
|
||||
#endif
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief LDR Exclusive (32 bit)
|
||||
|
||||
This function performs a exclusive LDR command for 32 bit values.
|
||||
|
||||
\param [in] ptr Pointer to data
|
||||
\return value of type uint32_t at (*ptr)
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief STR Exclusive (8 bit)
|
||||
|
||||
This function performs a exclusive STR command for 8 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief STR Exclusive (16 bit)
|
||||
|
||||
This function performs a exclusive STR command for 16 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief STR Exclusive (32 bit)
|
||||
|
||||
This function performs a exclusive STR command for 32 bit values.
|
||||
|
||||
\param [in] value Value to store
|
||||
\param [in] ptr Pointer to location
|
||||
\return 0 Function succeeded
|
||||
\return 1 Function failed
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
|
||||
/** \brief Remove the exclusive lock
|
||||
|
||||
This function removes the exclusive lock which is created by LDREX.
|
||||
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
|
||||
{
|
||||
__ASM volatile ("clrex" ::: "memory");
|
||||
}
|
||||
|
||||
|
||||
/** \brief Signed Saturate
|
||||
|
||||
This function saturates a signed value.
|
||||
|
||||
\param [in] value Value to be saturated
|
||||
\param [in] sat Bit position to saturate to (1..32)
|
||||
\return Saturated value
|
||||
*/
|
||||
#define __SSAT(ARG1,ARG2) \
|
||||
({ \
|
||||
uint32_t __RES, __ARG1 = (ARG1); \
|
||||
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
||||
__RES; \
|
||||
})
|
||||
|
||||
|
||||
/** \brief Unsigned Saturate
|
||||
|
||||
This function saturates an unsigned value.
|
||||
|
||||
\param [in] value Value to be saturated
|
||||
\param [in] sat Bit position to saturate to (0..31)
|
||||
\return Saturated value
|
||||
*/
|
||||
#define __USAT(ARG1,ARG2) \
|
||||
({ \
|
||||
uint32_t __RES, __ARG1 = (ARG1); \
|
||||
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
|
||||
__RES; \
|
||||
})
|
||||
|
||||
|
||||
/** \brief Count leading zeros
|
||||
|
||||
This function counts the number of leading zeros of a data value.
|
||||
|
||||
\param [in] value Value to count the leading zeros
|
||||
\return number of leading zeros in value
|
||||
*/
|
||||
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
|
||||
{
|
||||
uint32_t result;
|
||||
|
||||
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
|
||||
return(result);
|
||||
}
|
||||
|
||||
#endif /* (__CORTEX_M >= 0x03) */
|
||||
|
||||
|
||||
|
||||
|
||||
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
|
||||
/* TASKING carm specific functions */
|
||||
|
||||
/*
|
||||
* The CMSIS functions have been implemented as intrinsics in the compiler.
|
||||
* Please use "carm -?i" to get an up to date list of all intrinsics,
|
||||
* Including the CMSIS ones.
|
||||
*/
|
||||
|
||||
#endif
|
||||
|
||||
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
|
||||
|
||||
#endif /* __CORE_CMINSTR_H */
|
13
arm/itoa.h
Normal file
13
arm/itoa.h
Normal file
@ -0,0 +1,13 @@
|
||||
#pragma once
|
||||
|
||||
// out must be at least 8 bytes long
|
||||
inline void itoa(int val, char* out) {
|
||||
for (int i = 0; i < 8; i++) {
|
||||
uint8_t digit = (val >> (28 - 4 * i)) & 0xf;
|
||||
if (digit < 0xa) {
|
||||
out[i] = '0' + digit;
|
||||
} else {
|
||||
out[i] = 'a' + digit - 0xa;
|
||||
}
|
||||
}
|
||||
}
|
18
arm/lock.h
Normal file
18
arm/lock.h
Normal file
@ -0,0 +1,18 @@
|
||||
#pragma once
|
||||
|
||||
#include "aum1_cm1.h"
|
||||
|
||||
struct InterruptLock {
|
||||
bool was_locked;
|
||||
|
||||
InterruptLock()
|
||||
: was_locked(__get_PRIMASK() != 0) {
|
||||
__disable_irq();
|
||||
}
|
||||
|
||||
~InterruptLock() {
|
||||
if (!was_locked) {
|
||||
__enable_irq();
|
||||
}
|
||||
}
|
||||
};
|
93
arm/main.cc
93
arm/main.cc
@ -1,32 +1,83 @@
|
||||
#include "async.h"
|
||||
#include "aum1_cm1.h"
|
||||
#include "buffer.h"
|
||||
#include "crash.h"
|
||||
#include "gpio.h"
|
||||
#include "timer.h"
|
||||
#include "trace.h"
|
||||
#include "uart.h"
|
||||
|
||||
namespace {
|
||||
using async::AwaitableType;
|
||||
|
||||
[[maybe_unused]]
|
||||
void sleep(int ms) {
|
||||
for (int i = 0; i < ms; i++) {
|
||||
// sleep for 1 ms
|
||||
for (int j = 0; j < 22000; j++) {
|
||||
asm("");
|
||||
}
|
||||
}
|
||||
void HandleUartRxFromIsr(void*, unsigned int) {
|
||||
tracing::trace(tracing::TraceEvent::kUartRxCb);
|
||||
async::resume(AwaitableType::kUartRx);
|
||||
}
|
||||
|
||||
void Uart0Isr() {
|
||||
tracing::trace(tracing::TraceEvent::kUartIsr);
|
||||
XUartLite_InterruptHandler(uart0);
|
||||
}
|
||||
|
||||
void Timer0Isr() {
|
||||
tracing::dump();
|
||||
__builtin_trap();
|
||||
}
|
||||
|
||||
void SetupUart() {
|
||||
InitUarts();
|
||||
|
||||
auto* vector_table = reinterpret_cast<uint32_t*>(0x0);
|
||||
vector_table[16 + HardFault_IRQn] =
|
||||
reinterpret_cast<uint32_t>(crash::HardFaultHandler);
|
||||
|
||||
vector_table[16 + Uart0_IRQn] = reinterpret_cast<uint32_t>(Uart0Isr);
|
||||
vector_table[16 + Timer0_IRQn] = reinterpret_cast<uint32_t>(Timer0Isr);
|
||||
NVIC_SetPriority(Uart0_IRQn, 3);
|
||||
NVIC_EnableIRQ(Uart0_IRQn);
|
||||
|
||||
XUartLite_SetSendHandler(uart0, HandleUartTxFromIsr, nullptr);
|
||||
XUartLite_SetRecvHandler(uart0, HandleUartRxFromIsr, nullptr);
|
||||
XUartLite_EnableInterrupt(uart0);
|
||||
}
|
||||
|
||||
void SetupTimer() {
|
||||
NVIC_EnableIRQ(Timer0_IRQn);
|
||||
timer0->SetupAsWdt(100000 * 4000);
|
||||
timer0->EnableT1();
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" int main() {
|
||||
uint8_t cnt = 0;
|
||||
|
||||
for (int i = 0; i < 256; i++) {
|
||||
gpio0->data = cnt;
|
||||
cnt++;
|
||||
|
||||
sleep(125);
|
||||
async::task<buffer> UartRead(int size) {
|
||||
auto buff = buffer::make(size);
|
||||
auto* data = reinterpret_cast<uint8_t*>(buff.data.data());
|
||||
size_t received = XUartLite_Recv(uart0, data, buff.data.size());
|
||||
if (received < buff.data.size()) {
|
||||
co_await async::await(AwaitableType::kUartRx);
|
||||
}
|
||||
co_return buff;
|
||||
}
|
||||
|
||||
auto* airc = reinterpret_cast<volatile uint32_t*>(0xe000ed0c);
|
||||
uint32_t a = *airc;
|
||||
*airc = a | 0x04;
|
||||
|
||||
while (1) {}
|
||||
async::task<> echo() {
|
||||
while (1) {
|
||||
buffer buff = co_await UartRead(1);
|
||||
UartSend(buff.data);
|
||||
}
|
||||
}
|
||||
|
||||
int main() {
|
||||
SetupUart();
|
||||
SetupTimer();
|
||||
|
||||
async::schedule(echo().h);
|
||||
|
||||
async::main_loop([]() {
|
||||
static int cnt = 0;
|
||||
timer0->Pet();
|
||||
if ((cnt++ % 100000) == 0) {
|
||||
ToggleLed(0);
|
||||
}
|
||||
});
|
||||
// should never get here
|
||||
}
|
||||
|
25
arm/makefile
25
arm/makefile
@ -15,14 +15,16 @@ LDFLAGS = -march=armv6-m \
|
||||
-Wl,--gc-sections -Os \
|
||||
-Wl,--print-memory-usage -flto
|
||||
|
||||
includes += -Ihal/cmsis
|
||||
|
||||
sources += hal/lib/common/xil_assert.c
|
||||
includes += -Ihal/lib/common
|
||||
|
||||
sources += hal/uart/xuartlite.c hal/uart/xuartlite_stats.c
|
||||
sources += hal/uart/xuartlite.c hal/uart/xuartlite_stats.c hal/uart/xuartlite_intr.c
|
||||
includes += -Ihal/uart
|
||||
|
||||
bootloader_objects = uart.o bootloader.o vector_table.o $(sources:.c=.o)
|
||||
app_objects = app_init.o main.o
|
||||
app_objects = app_init.o crash.o main.o uart.o stdlib.o async.o trace.o $(sources:.c=.o)
|
||||
|
||||
CPPFLAGS += $(includes)
|
||||
|
||||
@ -37,10 +39,21 @@ bootloader.elf: $(bootloader_objects) bootloader.ld
|
||||
app.elf: $(app_objects) app.ld
|
||||
$(LD) -Wl,-Tapp.ld $(LDFLAGS) -o $@ $(app_objects)
|
||||
|
||||
%.elf:
|
||||
$(LD) -Wl,-Tapp.ld $(LDFLAGS) -o $@ $^
|
||||
.PHONY: clean test
|
||||
|
||||
.PHONY: clean
|
||||
deps = $(app_objects:.o=.d) $(bootloader_objects:.o=.d)
|
||||
|
||||
clean:
|
||||
rm -rf *.elf *.bin $(app_objects) $(bootloader_objects)
|
||||
rm -rf *.elf *.bin $(tests) $(app_objects) $(bootloader_objects) $(deps)
|
||||
|
||||
HOSTCXX = clang++
|
||||
|
||||
tests = ring_buffer_test
|
||||
|
||||
test: $(tests)
|
||||
|
||||
ring_buffer_test: ring_buffer_test.cc
|
||||
$(HOSTCXX) -std=c++2a -o $@ $< -lgmock -lgtest -lgtest_main
|
||||
./$@
|
||||
|
||||
-include $(deps)
|
||||
|
87
arm/ring_buffer.h
Normal file
87
arm/ring_buffer.h
Normal file
@ -0,0 +1,87 @@
|
||||
#pragma once
|
||||
|
||||
#include <atomic>
|
||||
#include <span>
|
||||
|
||||
struct RingBuffer {
|
||||
std::span<std::byte> buffer;
|
||||
|
||||
std::atomic<size_t> read_ptr = 0;
|
||||
std::atomic<size_t> write_ptr = 0;
|
||||
std::atomic<bool> full = 0;
|
||||
|
||||
bool Store(std::span<const std::byte> data) {
|
||||
if (data.size() > FreeSpace()) {
|
||||
return false;
|
||||
}
|
||||
const size_t to_copy = std::min(buffer.size() - write_ptr, data.size());
|
||||
std::copy(data.begin(), data.begin() + to_copy, buffer.begin() + write_ptr);
|
||||
if (to_copy < data.size()) {
|
||||
std::copy(data.begin() + to_copy, data.end(), buffer.begin());
|
||||
}
|
||||
Push(data.size());
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Load(std::span<std::byte> out) {
|
||||
if (out.size() > AvailableData()) {
|
||||
return false;
|
||||
}
|
||||
const size_t to_copy = std::min(buffer.size() - read_ptr, out.size());
|
||||
std::copy(buffer.begin() + read_ptr, buffer.begin() + read_ptr + to_copy, out.begin());
|
||||
if (to_copy < out.size()) {
|
||||
std::copy(buffer.begin(), buffer.begin() + out.size() - to_copy, out.begin() + to_copy);
|
||||
}
|
||||
Pop(out.size());
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Push(size_t amount) {
|
||||
if (amount > FreeSpace()) {
|
||||
return false;
|
||||
}
|
||||
write_ptr = (write_ptr + amount) % buffer.size();
|
||||
if (read_ptr == write_ptr) {
|
||||
full = true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool Pop(size_t amount) {
|
||||
if (amount > AvailableData()) {
|
||||
return false;
|
||||
}
|
||||
read_ptr = (read_ptr + amount) % buffer.size();
|
||||
if (amount > 0) {
|
||||
full = false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
size_t FreeSpace() const {
|
||||
return buffer.size() - AvailableData();
|
||||
}
|
||||
|
||||
size_t AvailableData() const {
|
||||
if (read_ptr == write_ptr) {
|
||||
return full ? buffer.size() : 0;
|
||||
}
|
||||
return (buffer.size() + write_ptr - read_ptr) % buffer.size();
|
||||
}
|
||||
|
||||
uint8_t* RawReadPointer() const {
|
||||
return reinterpret_cast<uint8_t*>(buffer.data() + read_ptr);
|
||||
}
|
||||
|
||||
size_t ContiguousAvailableData() const {
|
||||
if (read_ptr < write_ptr) {
|
||||
return AvailableData();
|
||||
}
|
||||
if (full) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return buffer.size() - read_ptr;
|
||||
}
|
||||
};
|
42
arm/ring_buffer_test.cc
Normal file
42
arm/ring_buffer_test.cc
Normal file
@ -0,0 +1,42 @@
|
||||
#include "ring_buffer.h"
|
||||
|
||||
#include <gmock/gmock.h>
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <array>
|
||||
|
||||
using namespace ::testing;
|
||||
|
||||
TEST(RingBuffer, BasicStoreLoad) {
|
||||
std::array<char, 20> arr;
|
||||
RingBuffer rb{.buffer = std::as_writable_bytes(std::span{arr})};
|
||||
|
||||
std::array<char, 10> a0 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
|
||||
std::array<char, 10> a1 = {};
|
||||
|
||||
ASSERT_TRUE(rb.Store(std::as_bytes(std::span{a0})));
|
||||
ASSERT_TRUE(rb.Load(std::as_writable_bytes(std::span{a1})));
|
||||
|
||||
EXPECT_THAT(a1, ElementsAre(0, 1, 2, 3, 4, 5, 6, 7, 8, 9));
|
||||
}
|
||||
|
||||
TEST(RingBuffer, StoreOverflow) {
|
||||
std::array<char, 10> arr;
|
||||
RingBuffer rb{.buffer = std::as_writable_bytes(std::span{arr})};
|
||||
|
||||
std::array<char, 8> a0 = {0, 1, 2, 3, 4, 5, 6, 7};
|
||||
std::array<char, 8> a1 = {};
|
||||
|
||||
ASSERT_TRUE(rb.Store(std::as_bytes(std::span{a0})));
|
||||
ASSERT_FALSE(rb.Store(std::as_bytes(std::span{a0})));
|
||||
|
||||
EXPECT_EQ(rb.AvailableData(), 8);
|
||||
|
||||
ASSERT_TRUE(rb.Pop(7));
|
||||
EXPECT_EQ(rb.AvailableData(), 1);
|
||||
|
||||
EXPECT_TRUE(rb.Store(std::as_bytes(std::span{a0})));
|
||||
ASSERT_TRUE(rb.Load(std::as_writable_bytes(std::span{a1})));
|
||||
// one byte leftover from first run, then 7 more
|
||||
EXPECT_THAT(a1, ElementsAre(7, 0, 1, 2, 3, 4, 5, 6));
|
||||
}
|
10
arm/sleep.h
Normal file
10
arm/sleep.h
Normal file
@ -0,0 +1,10 @@
|
||||
#pragma once
|
||||
|
||||
inline void sleep(int ms) {
|
||||
for (int i = 0; i < ms; i++) {
|
||||
// sleep for 1 ms
|
||||
for (int j = 0; j < 22000; j++) {
|
||||
asm("");
|
||||
}
|
||||
}
|
||||
}
|
53
arm/stdlib.cc
Normal file
53
arm/stdlib.cc
Normal file
@ -0,0 +1,53 @@
|
||||
#include <sys/time.h>
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
#include "itoa.h"
|
||||
#include "lock.h"
|
||||
#include "timer.h"
|
||||
#include "uart.h"
|
||||
|
||||
extern unsigned char _heap_begin, _heap_end;
|
||||
|
||||
namespace {
|
||||
void LogStats(unsigned char* heap) {
|
||||
char number[] = "00000000\r\n";
|
||||
UartSend("Program break now at 0x");
|
||||
itoa(reinterpret_cast<int>(heap), number);
|
||||
UartSend(number);
|
||||
}
|
||||
} // namespace
|
||||
|
||||
extern "C" void* _sbrk(int increment) {
|
||||
static unsigned char* heap = &_heap_begin;
|
||||
unsigned char* prev_heap = heap;
|
||||
if (heap + increment >= &_heap_end) {
|
||||
UartSend("Heap overflow!\r\n");
|
||||
return reinterpret_cast<void*>(-1);
|
||||
}
|
||||
heap += increment;
|
||||
LogStats(heap);
|
||||
return prev_heap;
|
||||
}
|
||||
|
||||
extern "C" int _gettimeofday(struct timeval* tv, void* tzvp) {
|
||||
uint32_t ticks = timer0->GetT1Ticks();
|
||||
tv->tv_sec = ticks / 100000000;
|
||||
tv->tv_usec = (ticks % 100000000) / 100;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern "C" uint8_t __atomic_exchange_1(volatile void* ptr, uint8_t val,
|
||||
int memorder) {
|
||||
auto* dest = reinterpret_cast<volatile uint8_t*>(ptr);
|
||||
bool ret;
|
||||
|
||||
{
|
||||
InterruptLock lock;
|
||||
ret = *dest;
|
||||
*dest = val;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
63
arm/timer.h
Normal file
63
arm/timer.h
Normal file
@ -0,0 +1,63 @@
|
||||
#pragma once
|
||||
|
||||
struct TimerControl {
|
||||
union {
|
||||
struct {
|
||||
uint32_t MDT0 : 1;
|
||||
uint32_t UDT0 : 1;
|
||||
uint32_t GENT0 : 1;
|
||||
uint32_t CAPT0 : 1;
|
||||
uint32_t ARHT0 : 1;
|
||||
uint32_t LOAD0 : 1;
|
||||
uint32_t ENIT0 : 1;
|
||||
uint32_t ENT0 : 1;
|
||||
uint32_t T0INT : 1;
|
||||
uint32_t PWMA0 : 1;
|
||||
uint32_t ENALL : 1;
|
||||
uint32_t CASC : 1;
|
||||
|
||||
uint32_t reserved : 20;
|
||||
};
|
||||
uint32_t raw;
|
||||
};
|
||||
};
|
||||
|
||||
struct Timer {
|
||||
volatile TimerControl TCSR0;
|
||||
volatile uint32_t TLR0;
|
||||
volatile uint32_t TCR0;
|
||||
|
||||
uint32_t _reserved;
|
||||
|
||||
volatile TimerControl TCSR1;
|
||||
volatile uint32_t TLR1;
|
||||
volatile uint32_t TCR1;
|
||||
|
||||
void EnableT1() {
|
||||
TCSR1.ARHT0 = 1;
|
||||
TCSR1.ENT0 = 1;
|
||||
}
|
||||
|
||||
uint32_t GetT1Ticks() {
|
||||
return TCR1;
|
||||
}
|
||||
|
||||
void SetupAsWdt(uint32_t timeout_ticks) {
|
||||
TLR0 = timeout_ticks;
|
||||
TCSR0.LOAD0 = 1; // reset counter
|
||||
TCSR0.UDT0 = 1; // count backwards from the load value
|
||||
TCSR0.ENIT0 = 1; // enable interrupt
|
||||
|
||||
TCSR0.LOAD0 = 0; // allow counter to run
|
||||
TCSR0.ENT0 = 1; // enable timer
|
||||
}
|
||||
|
||||
void Pet() {
|
||||
TCSR0.ENT0 = 0;
|
||||
TCSR0.LOAD0 = 1;
|
||||
TCSR0.LOAD0 = 0;
|
||||
TCSR0.ENT0 = 1;
|
||||
}
|
||||
};
|
||||
|
||||
#define timer0 ((Timer*) 0x40002000)
|
38
arm/trace.cc
Normal file
38
arm/trace.cc
Normal file
@ -0,0 +1,38 @@
|
||||
#include "trace.h"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
#include "itoa.h"
|
||||
#include "lock.h"
|
||||
#include "uart.h"
|
||||
|
||||
namespace tracing {
|
||||
namespace {
|
||||
|
||||
constexpr size_t kTraceBufferSize = 256;
|
||||
std::array<TraceEvent, kTraceBufferSize> buffer;
|
||||
size_t write_ptr = 0;
|
||||
|
||||
} // namespace
|
||||
|
||||
void trace(int raw_event) { trace(static_cast<TraceEvent>(raw_event)); }
|
||||
|
||||
void trace(TraceEvent event) {
|
||||
InterruptLock lock;
|
||||
|
||||
buffer[write_ptr] = event;
|
||||
|
||||
write_ptr = (write_ptr + 1) % buffer.size();
|
||||
}
|
||||
|
||||
void dump() {
|
||||
std::rotate(buffer.begin(), buffer.begin() + write_ptr, buffer.end());
|
||||
|
||||
char number[] = "00000000\r\n";
|
||||
|
||||
for (TraceEvent event : buffer) {
|
||||
itoa(static_cast<int>(event), number);
|
||||
UartSendCrash(number);
|
||||
}
|
||||
}
|
||||
} // namespace tracing
|
17
arm/trace.h
Normal file
17
arm/trace.h
Normal file
@ -0,0 +1,17 @@
|
||||
#pragma once
|
||||
|
||||
#include <cstdint>
|
||||
|
||||
namespace tracing {
|
||||
enum class TraceEvent : uint8_t {
|
||||
kUnknown = 0,
|
||||
|
||||
kUartIsr,
|
||||
kUartRxCb,
|
||||
kUartTxCb,
|
||||
};
|
||||
|
||||
void trace(TraceEvent event);
|
||||
void trace(int raw_event);
|
||||
void dump();
|
||||
} // namespace tracing
|
44
arm/uart.cc
44
arm/uart.cc
@ -1,5 +1,9 @@
|
||||
#include "uart.h"
|
||||
|
||||
#include "gpio.h"
|
||||
#include "ring_buffer.h"
|
||||
#include "trace.h"
|
||||
|
||||
namespace {
|
||||
|
||||
constexpr uintptr_t kUart0BaseAddress = 0x40001000;
|
||||
@ -12,6 +16,10 @@ XUartLite_Config uart0_config = {
|
||||
.DataBits = 8,
|
||||
};
|
||||
|
||||
constexpr size_t kUartTxBufferSize = 256;
|
||||
std::array<std::byte, kUartTxBufferSize> tx_buffer = {};
|
||||
RingBuffer tx_ring_buffer{.buffer = tx_buffer};
|
||||
|
||||
} // namespace
|
||||
|
||||
XUartLite* uart0 = &uart0_inst;
|
||||
@ -19,3 +27,39 @@ XUartLite* uart0 = &uart0_inst;
|
||||
void InitUarts() {
|
||||
XUartLite_CfgInitialize(uart0, &uart0_config, uart0_config.RegBaseAddr);
|
||||
}
|
||||
|
||||
extern "C" uint8_t XUartLite_GetSR(XUartLite* InstancePtr);
|
||||
#define XUL_SR_TX_FIFO_EMPTY 0x04 /* transmit FIFO empty */
|
||||
|
||||
void UartSendCrash(std::span<const std::byte> data) {
|
||||
while (data.size() > 0) {
|
||||
while ((XUartLite_GetSR(uart0) & XUL_SR_TX_FIFO_EMPTY) == 0) {
|
||||
}
|
||||
auto* dat =
|
||||
reinterpret_cast<uint8_t*>(const_cast<std::byte*>(data.data()));
|
||||
uint8_t sent = XUartLite_Send(uart0, dat, data.size());
|
||||
data = data.subspan(sent);
|
||||
}
|
||||
while ((XUartLite_GetSR(uart0) & XUL_SR_TX_FIFO_EMPTY) == 0) {
|
||||
}
|
||||
}
|
||||
|
||||
// blocking
|
||||
void UartSend(std::span<const std::byte> data) {
|
||||
while (!tx_ring_buffer.Store(data)) {
|
||||
}
|
||||
|
||||
if (!XUartLite_IsSending(uart0)) {
|
||||
XUartLite_Send(uart0, tx_ring_buffer.RawReadPointer(),
|
||||
tx_ring_buffer.ContiguousAvailableData());
|
||||
}
|
||||
}
|
||||
|
||||
void HandleUartTxFromIsr(void*, unsigned int transmitted) {
|
||||
tracing::trace(tracing::TraceEvent::kUartTxCb);
|
||||
tx_ring_buffer.Pop(transmitted);
|
||||
if (tx_ring_buffer.AvailableData() > 0) {
|
||||
XUartLite_Send(uart0, tx_ring_buffer.RawReadPointer(),
|
||||
tx_ring_buffer.ContiguousAvailableData());
|
||||
}
|
||||
}
|
||||
|
15
arm/uart.h
15
arm/uart.h
@ -1,7 +1,22 @@
|
||||
#pragma once
|
||||
|
||||
#include <span>
|
||||
#include <string_view>
|
||||
|
||||
#include "xuartlite.h"
|
||||
|
||||
extern XUartLite* uart0;
|
||||
|
||||
void InitUarts();
|
||||
|
||||
// blocking
|
||||
void UartSend(std::span<const std::byte> data);
|
||||
inline void UartSend(std::string_view s) {
|
||||
return UartSend(std::as_bytes(std::span{s.data(), s.size()}));
|
||||
}
|
||||
void UartSendCrash(std::span<const std::byte> data);
|
||||
inline void UartSendCrash(std::string_view s) {
|
||||
return UartSendCrash(std::as_bytes(std::span{s.data(), s.size()}));
|
||||
}
|
||||
|
||||
void HandleUartTxFromIsr(void*, unsigned int transmitted);
|
||||
|
@ -23,7 +23,7 @@ void ResetHandler() {
|
||||
|
||||
} // namespace
|
||||
|
||||
__attribute__((section(".vector_table")))
|
||||
__attribute__((section(".vector_table"), used))
|
||||
uint32_t vector_table[16] = {
|
||||
[StackPointer] = reinterpret_cast<uint32_t>(&_initial_stack_pointer),
|
||||
[Reset] = reinterpret_cast<uint32_t>(ResetHandler),
|
||||
|
Loading…
Reference in New Issue
Block a user