synth/arm/fake_uart.cc

202 lines
5.0 KiB
C++
Raw Normal View History

#include "uart.h"
#include "async.h"
#include "buffer.h"
#include "ring_buffer.h"
#include <array>
#include <mutex>
#include <vector>
namespace {
using async::AwaitableType;
constexpr size_t kUartTxBufferSize = 256;
std::array<std::byte, kUartTxBufferSize> tx_buffer = {};
RingBuffer tx_ring_buffer{.buffer = tx_buffer};
uint8_t* tx_buff = nullptr;
uint16_t tx_size = 0;
uint16_t tx_size_orig = 0;
uint8_t* rx_buff = nullptr;
uint16_t rx_size = 0;
uint16_t rx_size_orig = 0;
std::vector<std::byte> rx_overflow;
std::mutex interrupt_lock;
std::mutex fu_mutex;
} // namespace
//// Internal API
void FakeUart_Send(uint8_t* ptr, uint16_t size) {
std::scoped_lock lock(fu_mutex);
tx_buff = ptr;
tx_size = size;
tx_size_orig = size;
}
size_t FakeUart_Recv(uint8_t* ptr, uint16_t size) {
std::scoped_lock lock(fu_mutex);
if (size <= rx_overflow.size()) {
std::copy(rx_overflow.begin(), rx_overflow.begin() + size,
std::as_writable_bytes(std::span{ptr, size}).begin());
std::rotate(rx_overflow.begin(), rx_overflow.begin() + size, rx_overflow.end());
rx_overflow.resize(rx_overflow.size() - size);
return size;
}
rx_buff = ptr;
rx_size = size;
if (rx_overflow.empty()) {
return 0;
}
std::copy(rx_overflow.begin(), rx_overflow.end(),
std::as_writable_bytes(std::span{ptr, size}).begin());
size_t copied = rx_overflow.size();
rx_overflow.clear();
rx_buff += copied;
rx_size -= copied;
return copied;
}
uint8_t FakeUart_IsSending() {
std::scoped_lock lock(fu_mutex);
return tx_size > 0;
}
//// Backdoor access API
/// Those do trigger UART interrupts when tx/rx buffer state changes
buffer FakeUart_Drain(uint16_t size) {
std::scoped_lock isr_lock(interrupt_lock); // not really the same, but that'll do
std::scoped_lock lock(fu_mutex);
size_t drained = std::min(size, tx_size);
if (drained < 1) {
return buffer{};
}
buffer buff = buffer::make(drained);
auto txb = std::as_bytes(std::span{tx_buff, tx_size});
std::copy(txb.begin(), txb.begin() + drained, buff.data.begin());
tx_buff += drained;
tx_size -= drained;
if (tx_size < 1) {
fu_mutex.unlock();
HandleUartTxFromIsr(nullptr, tx_size_orig);
fu_mutex.lock();
}
return buff;
}
void FakeUart_Feed(std::span<const std::byte> data) {
std::scoped_lock lock(fu_mutex);
if (data.empty()) {
return;
}
auto rxb = std::as_writable_bytes(std::span{rx_buff, rx_size});
size_t fed = std::min(static_cast<size_t>(rx_size), data.size());
if (data.size() > fed) {
rx_overflow.insert(rx_overflow.end(), data.begin() + fed, data.end());
}
if (fed > 0) {
std::copy(data.begin(), data.begin() + fed, rxb.begin());
rx_buff += fed;
rx_size -= fed;
if (rx_size < 1) {
HandleUartRxFromIsr(nullptr, rx_size_orig);
}
}
}
void FakeUart_Reset() {
rx_overflow.clear();
rx_buff = nullptr;
rx_size = 0;
tx_buff = nullptr;
tx_size = 0;
}
//// Public API
void InitUarts() {}
void UartWriteCrash(std::span<const std::byte>) {}
void LogStuff() {}
void UartReadBlocking(std::span<std::byte>) {}
void UartWriteBlocking(std::span<const std::byte>) {}
void HandleUartIsr() {}
async::task<buffer> UartRead(int size) {
co_return buffer{};
}
void HandleUartTxFromIsr(void*, unsigned int transmitted) {
tx_ring_buffer.Pop(transmitted);
if (tx_ring_buffer.AvailableData() > 0 && !FakeUart_IsSending()) {
FakeUart_Send(tx_ring_buffer.RawReadPointer(),
tx_ring_buffer.ContiguousAvailableData());
}
async::resume(AwaitableType::kUartTx);
}
void HandleUartRxFromIsr(void*, unsigned int) {
async::resume(AwaitableType::kUartRx);
}
async::task<> UartWrite(std::span<const std::byte> data) {
while (!tx_ring_buffer.Store(data)) {
co_await async::await(AwaitableType::kUartTx);
}
{
std::scoped_lock lock(interrupt_lock);
if (!FakeUart_IsSending()) {
FakeUart_Send(tx_ring_buffer.RawReadPointer(),
tx_ring_buffer.ContiguousAvailableData());
}
}
}
async::task<> UartWriteLoop(async::gimme<std::span<const std::byte>>& data_gen) {
while (1) {
auto data = co_await data_gen;
while (!tx_ring_buffer.Store(data)) {
co_await async::await(AwaitableType::kUartTx);
}
{
std::scoped_lock lock(interrupt_lock);
if (tx_ring_buffer.AvailableData() && !FakeUart_IsSending()) {
FakeUart_Send(tx_ring_buffer.RawReadPointer(),
tx_ring_buffer.ContiguousAvailableData());
}
}
}
}
async::task<uint8_t> UartReadLoop() {
uint8_t c;
while (1) {
size_t received = FakeUart_Recv(&c, 1);
// some data may already be in the fifo, but if not, wait:
if (received < 1) {
co_await async::await(AwaitableType::kUartRx);
}
co_yield c;
}
}