5150/arduino/ramcheck/ramcheck.ino

282 lines
6.0 KiB
C++

// See RAM chip pinout here: https://www.digchip.com/datasheets/parts/datasheet/922/MK4116-pdf.php
const PinName kAddressPins[] = {
PA_7,
PC_7,
PB_6,
PB_10,
PA_8,
PA_9,
PB_4,
};
const PinName kRasPin = PA_6;
const PinName kWritePin = PB_9;
const PinName kDinPin = PB_8;
const PinName kDoutPin = PA_10;
const PinName kCasPin = PB_3;
void Timer1Isr();
void setup() {
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
for (int i = 0; i < 7; i++) {
pinMode(pinNametoDigitalPin(kAddressPins[i]), OUTPUT);
}
pinMode(pinNametoDigitalPin(kRasPin), OUTPUT);
pinMode(pinNametoDigitalPin(kCasPin), OUTPUT);
pinMode(pinNametoDigitalPin(kWritePin), OUTPUT);
pinMode(pinNametoDigitalPin(kDoutPin), INPUT);
pinMode(pinNametoDigitalPin(kDinPin), OUTPUT);
digitalWrite(pinNametoDigitalPin(kRasPin), HIGH);
digitalWrite(pinNametoDigitalPin(kCasPin), HIGH);
digitalWrite(pinNametoDigitalPin(kWritePin), HIGH);
// Instantiate HardwareTimer object. Thanks to 'new' instanciation, HardwareTimer is not destructed when setup() function is finished.
HardwareTimer *MyTim = new HardwareTimer(TIM1);
MyTim->setOverflow(1400, MICROSEC_FORMAT);
MyTim->attachInterrupt(Timer1Isr);
MyTim->resume();
}
#define LV(x) ((x) ? HIGH : LOW)
void writeAddress(int address) {
for (int i = 0; i < 7; i++) {
digitalWriteFast(kAddressPins[i], LV(address & (1 << i)));
}
}
int read(int address) {
int row = address >> 7;
int col = address & 0x7f;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
delayMicroseconds(1); // tCAS ish
int out = digitalReadFast(kDoutPin);
digitalWriteFast(kCasPin, HIGH);
digitalWriteFast(kRasPin, HIGH);
interrupts();
return out;
}
void write(int address, int data) {
int row = address >> 7;
int col = address & 0x7f;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
digitalWriteFast(kWritePin, LOW);
digitalWriteFast(kDinPin, LV(data));
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
for (int i = 0; i < 10; i++) asm volatile(""); // extra delay
digitalWriteFast(kWritePin, HIGH);
delayMicroseconds(1); // tCAS ish
digitalWriteFast(kCasPin, HIGH);
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
void writepage(int address, const uint8_t data[16]) {
int row = address >> 7;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
for (int col = 0; col < 128; col++) {
int b = data[col >> 3] & (1 << (col % 8));
digitalWriteFast(kDinPin, LV(b));
digitalWriteFast(kWritePin, LOW);
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
for (int i = 0; i < 10; i++) asm volatile(""); // extra delay
digitalWriteFast(kWritePin, HIGH);
delayMicroseconds(1); // tCAS ish
digitalWriteFast(kCasPin, HIGH);
}
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
void readpage(int address, uint8_t data[16]) {
int row = address >> 7;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
for (int col = 0; col < 128; col++) {
uint8_t& out = data[col >> 3];
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
delayMicroseconds(1); // tCAS ish
int b = digitalReadFast(kDoutPin);
out >>= 1;
if (b == HIGH) out |= 0x80;
digitalWriteFast(kCasPin, HIGH);
}
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
int writeread(int address, int value) {
write(address, value);
return read(address);
}
void refreshrow(int row) {
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
delayMicroseconds(1);
digitalWriteFast(kRasPin, HIGH);
}
void refreshall() {
for (int row = 0; row < 128; row++) {
refreshrow(row);
}
}
void Timer1Isr() {
refreshall();
}
int check01(int address) {
if (writeread(address, 0) != 0) return -1;
if (writeread(address, 1) != 1) return -2;
return 0;
}
int checkrow(int row) {
int row_address = row << 7;
for (int i = 0; i < 128; i++) {
int ret = check01(row_address + i);
if (ret != 0) {
Serial.printf("failure at 0x%04x: %d\n", row_address + i, ret);
return ret;
}
}
return 0;
}
int address = 0x007f;
int led_count = 0;
int led = 0;
char cmd = '\0';
const int kLedInterval = 1000000;
const uint8_t kSampleData[16] = {
'b', 'l', 'a', 'r', 'g', ',', ' ', 'c',
'e', 'c', 'i', ' ', 'e', 's', 't', '!',
};
void dump16(int address) {
address &= 0x3f80;
uint8_t data[16];
readpage(address, data);
Serial.printf("%04x:", address);
for (int i = 0; i < 16; i++) {
Serial.printf(" %02x", data[i]);
}
Serial.print(" ");
for (int i = 0; i < 16; i++) {
if (data[i] < 33 || data[i] > 126) {
Serial.print(".");
} else {
Serial.printf("%c", data[i]);
}
}
Serial.println("");
}
void filltest() {
uint8_t data[16];
for (int row = 0; row < 128; row++) {
snprintf(reinterpret_cast<char*>(data), 16, "testing row %03d", row);
writepage(row << 7, data);
}
for (int row = 0; row < 128; row++) {
readpage(row << 7, data);
if (atoi(reinterpret_cast<char*>(&data[12])) != row) {
Serial.printf("error in row %d\n", row);
return;
}
}
Serial.println("fill test ok.");
}
void runcmd(char cmd) {
uint8_t dat[16];
if (cmd == 'p') {
writepage(address, kSampleData);
dump16(address);
} else if (cmd == '\0') {
address += 128;
dump16(address);
} else if (cmd == '0') {
address = 0;
dump16(address);
} else if (cmd == 'f') {
filltest();
} else if (cmd == 't') {
for (int row = 0; row < 128; row++) {
Serial.printf("row %d... ", row);
int ret = checkrow(row);
if (ret != 0) {
break;
}
Serial.println("ok!");
}
}
}
void loop() {
// put your main code here, to run repeatedly:
if (led_count > kLedInterval) {
digitalWrite(LED_BUILTIN, LV(led % 2));
led += 1;
led_count = 0;
}
led_count += 1;
if (Serial.available()) {
char c = Serial.read();
if (c == '\n') {
runcmd(cmd);
cmd = '\0';
} else {
cmd = c;
}
}
}