Add arduino skecthes

This commit is contained in:
Paul Mathieu 2025-09-14 15:52:39 +02:00
parent b2eeaa2785
commit 4d77b77daf
3 changed files with 747 additions and 0 deletions

194
arduino/kbd/kbd.ino Normal file
View File

@ -0,0 +1,194 @@
// keyboard wiring diagram: https://www.minuszerodegrees.net/5150/misc/5150_keyboard_reset.jpg
constexpr int kClockPin = PC6;
constexpr int kDataPin = PC4;
constexpr int kBitDelayMicros = 100;
constexpr int kCodeDelayMicros = 200;
constexpr int kKeyDelayMicros = 100;
void setup() {
// put your setup code here, to run once:
Serial.begin(115200);
pinMode(LED_BUILTIN, OUTPUT);
pinMode(kClockPin, INPUT);
pinMode(kDataPin, INPUT);
Serial.println("kbd 0.1");
}
// 0. reset
// 0.0. clock line will be held low externally for 20 ms
// when back up, keyboard needs to clock 0xAA as a response
//
// 1. operation
// 1.0. just directly clock out scan codes of pressed keys
void sendCode(int code) {
Serial.printf("sending code 0x%02x\n", code);
// preconditions: clock and data pins are INPUT
while (digitalRead(kDataPin) == LOW || digitalRead(kClockPin) == LOW) {
// wait. we're not allowed to send
}
digitalWrite(kDataPin, LOW);
digitalWrite(kClockPin, LOW);
pinMode(kClockPin, OUTPUT);
delayMicroseconds(kBitDelayMicros);
pinMode(kClockPin, INPUT);
// delayMicroseconds(kDelayMicros);
for (int i = 0; i < 8; i++) {
if ((code & (1 << i)) == 0) {
// send a 0
pinMode(kDataPin, OUTPUT);
} // else do nothing, it's already a 1
delayMicroseconds(kBitDelayMicros);
pinMode(kClockPin, OUTPUT);
delayMicroseconds(kBitDelayMicros);
pinMode(kDataPin, INPUT);
pinMode(kClockPin, INPUT);
}
delayMicroseconds(kCodeDelayMicros);
}
enum State {
kReady,
kMaybeReset,
};
constexpr int kResetDelay = 19;
State state = State::kReady;
int lastclocklow = 0;
constexpr int kLetterCodes[] = {
0x1E, // 'a'
0x30,
0x2E,
0x20,
0x12,
0x21,
0x22,
0x23,
0x17,
0x24,
0x25,
0x26,
0x32,
0x31,
0x18,
0x19,
0x10,
0x13,
0x1F,
0x14,
0x16,
0x2F,
0x11,
0x2D,
0x15,
0x2c,
};
constexpr int kNumberCodes[] = {
0x0B, // '0'
0x02,
0x03,
0x04,
0x05,
0x06,
0x07,
0x08,
0x09,
0x0A,
};
void sendNormalCode(int code) {
sendCode(code);
sendCode(code | 0x80);
}
void sendShiftCode(int code) {
sendCode(42); // left shift
sendNormalCode(code);
sendCode(42 | 0x80);
}
void sendAsciiChar(int c) {
if (c >= 'a' && c <= 'z') {
return sendNormalCode(kLetterCodes[c - 'a']);
} else if (c >= '0' && c <= '9') {
return sendNormalCode(kNumberCodes[c - '0']);
} else if (c >= 'A' && c <= 'Z') {
return sendShiftCode(kLetterCodes[c - 'A']);
}
switch (c) {
case '-': return sendNormalCode(12);
case '=': return sendNormalCode(13);
case '[': return sendNormalCode(26);
case ']': return sendNormalCode(27);
case ';': return sendNormalCode(39);
case '\'': return sendNormalCode(40);
case ',': return sendNormalCode(51);
case '.': return sendNormalCode(52);
case '/': return sendNormalCode(53);
case ' ': return sendNormalCode(57);
case '\n': return sendNormalCode(28);
case '!': return sendShiftCode(2);
case '@': return sendShiftCode(3);
case '#': return sendShiftCode(4);
case '$': return sendShiftCode(5);
case '%': return sendShiftCode(6);
case '^': return sendShiftCode(7);
case '&': return sendShiftCode(8);
case '*': return sendShiftCode(9);
case '(': return sendShiftCode(10);
case ')': return sendShiftCode(11);
case '_': return sendShiftCode(12);
case '+': return sendShiftCode(13);
case '{': return sendShiftCode(26);
case '}': return sendShiftCode(27);
case ':': return sendShiftCode(39);
case '"': return sendShiftCode(40);
case '<': return sendShiftCode(51);
case '>': return sendShiftCode(52);
case '?': return sendShiftCode(53);
}
}
void loop() {
static int led_counter = 0;
static int led = HIGH;
if (led_counter > 400000) {
led_counter = 0;
led = (led == HIGH) ? LOW : HIGH;
digitalWrite(LED_BUILTIN, led);
}
led_counter += 1;
int clockp = digitalRead(kClockPin);
if (state == State::kReady && clockp == LOW) {
state = State::kMaybeReset;
lastclocklow = millis();
} else if (state == State::kMaybeReset) {
if (clockp == HIGH && millis() - lastclocklow > kResetDelay) {
delay(1);
state = State::kReady;
sendCode(0xaa);
Serial.println("Reset!");
}
}
if (Serial.available() > 0) {
int c = Serial.read();
sendAsciiChar(c);
//delayMicroseconds(kKeyDelayMicros);
}
}

View File

@ -0,0 +1,272 @@
#define LV(x) ((x) ? HIGH : LOW)
// pinout sorta like this: https://myoldcomputer.nl/Files/Datasheet/2364-Commodore.pdf
const int kDataPins[] = {
PA12,
PA11,
PB12,
PB11,
PB2,
PB1,
PB15,
PB14,
};
const int kAddressPins[] = {
D15,
D14,
D12,
D11,
D10,
D9,
D8,
D7,
D6,
D5,
D4,
D3,
D2,
};
const int kOutputEnablePin = PC9;
const int kWriteEnablePin = PC8;
void setData(int direction) {
for (int i = 0; i < 8; i++) {
pinMode(kDataPins[i], direction);
}
}
void setup() {
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
setData(INPUT);
for (int i = 0; i < 13; i++) {
pinMode(kAddressPins[i], OUTPUT);
}
pinMode(kOutputEnablePin, OUTPUT);
digitalWrite(kOutputEnablePin, HIGH);
pinMode(kWriteEnablePin, OUTPUT);
digitalWrite(kWriteEnablePin, HIGH);
}
int readData() {
int out = 0;
for (int i = 0; i < 8; i++) {
if (digitalRead(kDataPins[i]) == HIGH) {
out += (1 << i);
}
}
return out;
}
void writeData(int data) {
for (int i = 0; i < 8; i++) {
digitalWrite(kDataPins[i], LV(data & (1 << i)));
}
}
void writeAddress(int address) {
for (int i = 0; i < 13; i++) {
digitalWrite(kAddressPins[i], LV(address & (1 << i)));
}
}
int read(int address) {
writeAddress(address);
delayMicroseconds(1);
digitalWrite(kOutputEnablePin, LOW);
delayMicroseconds(1);
int out = readData();
digitalWrite(kOutputEnablePin, HIGH);
return out;
}
void write(int address, int data) {
writeAddress(address);
delayMicroseconds(1);
digitalWrite(kWriteEnablePin, LOW);
writeData(data);
delayMicroseconds(1);
digitalWrite(kWriteEnablePin, HIGH);
}
void chiperase() {
write(0x5555, 0xaa);
write(0x2aaa, 0x55);
write(0x5555, 0x80);
write(0x5555, 0xaa);
write(0x2aaa, 0x55);
write(0x5555, 0x10);
delay(20);
}
constexpr int kBufferSize = 256;
int address = 0;
int led_counter = 0;
int led = HIGH;
char buffer[kBufferSize] = {};
int buffer_size = 0;
const char* kSampleData = "this is a blarg";
int readnibble(const char c) {
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'A' && c <= 'F') return 10 + c - 'A';
if (c >= 'a' && c <= 'f') return 10 + c - 'a';
return -1;
}
int readint8(const char* buffer) {
int n1 = readnibble(buffer[0]);
int n2 = readnibble(buffer[1]);
if (n1 < 0 || n2 < 0) return -1;
return (n1 << 4) + n2;
}
int readint16(const char* buffer) {
int i1 = readint8(buffer);
int i2 = readint8(buffer + 2);
if (i1 < 0 || i2 < 0) return -1;
return (i1 << 8) + i2;
}
int readpage(const char* buffer, char page[64]) {
for (int i = 0; i < 64; i++) {
int b = readint8(&buffer[i*2]);
if (b < 0) {
Serial.printf("error: wrong hex character %c%c\n", buffer[i*2], buffer[i*2+1]);
return -1;
}
page[i] = b;
}
return 0;
}
int writepage(int address, const char page[64]) {
int start = micros();
for (int i = 0; i < 64; i++) {
write(address + i, page[i]);
}
int end = micros();
delay(10);
return end - start;
}
void dump16(int address) {
address = address & 0x1ff0;
char buff[16];
for (int i = 0; i < 16; i++) {
buff[i] = read(address + i);
}
Serial.printf("%04x:", address);
for (int i = 0; i < 16; i++) {
Serial.printf(" %02x", buff[i]);
}
Serial.print(" ");
for (int i = 0; i < 16; i++) {
if (buff[i] >= 33 && buff[i] <= 127) {
Serial.printf("%c", buff[i]);
} else {
Serial.print(".");
}
}
Serial.print("\n");
}
void runcmd(const char* buffer, int size) {
int cmd = buffer[0];
if (size < 1) {
dump16(address);
address += 16;
return;
}
if (cmd == '0') {
address = 0;
} else if (cmd == 'a') {
if (size < 5) {
Serial.println("error: incomplete address command");
return;
}
address = readint16(buffer + 1);
} else if (cmd == 'w') {
if (size < 1 + 4 + 2) {
Serial.println("error: incomplete write command");
return;
}
int address = readint16(buffer + 1);
int data = readint8(buffer + 5);
setData(OUTPUT);
write(address, data);
delay(10);
setData(INPUT);
Serial.printf("wrote data at 0x%04x\n", address);
dump16(address & 0x1ff0);
} else if (cmd == 'p') {
if (size < 1 + 4 + 128) {
Serial.println("error: incomplete page command");
return;
}
int address = readint16(buffer + 1) & 0x1fc0;
char page[64];
if (readpage(buffer + 5, page) != 0) return;
setData(OUTPUT);
int elapsed = writepage(address, page);
setData(INPUT);
Serial.printf("wrote page at 0x%04x in %d us\n", address, elapsed);
dump16(address);
dump16(address + 16);
dump16(address + 32);
dump16(address + 48);
} else if (cmd == 's') {
int addr = address & 0x1ff0;
Serial.printf("writing sample data to 0x%04x\n", addr);
setData(OUTPUT);
for (int i = 0; i < 16; i++) {
write(addr + i, kSampleData[i]);
}
setData(INPUT);
} else if (cmd == 'e') {
setData(OUTPUT);
chiperase();
setData(INPUT);
Serial.println("chip erased");
}
}
void loop() {
if (led_counter > 200000) {
led_counter = 0;
led = (led == HIGH) ? LOW : HIGH;
digitalWrite(LED_BUILTIN, led);
}
led_counter += 1;
if (Serial.available()) {
char c = Serial.read();
if (c == '\n') {
buffer[buffer_size] = 0;
runcmd(buffer, buffer_size);
buffer_size = 0;
buffer[0] = 0;
} else {
buffer[buffer_size] = c;
buffer_size = min(kBufferSize - 1, buffer_size + 1);
}
}
}

View File

@ -0,0 +1,281 @@
// See RAM chip pinout here: https://www.digchip.com/datasheets/parts/datasheet/922/MK4116-pdf.php
const PinName kAddressPins[] = {
PA_7,
PC_7,
PB_6,
PB_10,
PA_8,
PA_9,
PB_4,
};
const PinName kRasPin = PA_6;
const PinName kWritePin = PB_9;
const PinName kDinPin = PB_8;
const PinName kDoutPin = PA_10;
const PinName kCasPin = PB_3;
void Timer1Isr();
void setup() {
pinMode(LED_BUILTIN, OUTPUT);
Serial.begin(115200);
for (int i = 0; i < 7; i++) {
pinMode(pinNametoDigitalPin(kAddressPins[i]), OUTPUT);
}
pinMode(pinNametoDigitalPin(kRasPin), OUTPUT);
pinMode(pinNametoDigitalPin(kCasPin), OUTPUT);
pinMode(pinNametoDigitalPin(kWritePin), OUTPUT);
pinMode(pinNametoDigitalPin(kDoutPin), INPUT);
pinMode(pinNametoDigitalPin(kDinPin), OUTPUT);
digitalWrite(pinNametoDigitalPin(kRasPin), HIGH);
digitalWrite(pinNametoDigitalPin(kCasPin), HIGH);
digitalWrite(pinNametoDigitalPin(kWritePin), HIGH);
// Instantiate HardwareTimer object. Thanks to 'new' instanciation, HardwareTimer is not destructed when setup() function is finished.
HardwareTimer *MyTim = new HardwareTimer(TIM1);
MyTim->setOverflow(1400, MICROSEC_FORMAT);
MyTim->attachInterrupt(Timer1Isr);
MyTim->resume();
}
#define LV(x) ((x) ? HIGH : LOW)
void writeAddress(int address) {
for (int i = 0; i < 7; i++) {
digitalWriteFast(kAddressPins[i], LV(address & (1 << i)));
}
}
int read(int address) {
int row = address >> 7;
int col = address & 0x7f;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
delayMicroseconds(1); // tCAS ish
int out = digitalReadFast(kDoutPin);
digitalWriteFast(kCasPin, HIGH);
digitalWriteFast(kRasPin, HIGH);
interrupts();
return out;
}
void write(int address, int data) {
int row = address >> 7;
int col = address & 0x7f;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
digitalWriteFast(kWritePin, LOW);
digitalWriteFast(kDinPin, LV(data));
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
for (int i = 0; i < 10; i++) asm volatile(""); // extra delay
digitalWriteFast(kWritePin, HIGH);
delayMicroseconds(1); // tCAS ish
digitalWriteFast(kCasPin, HIGH);
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
void writepage(int address, const uint8_t data[16]) {
int row = address >> 7;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
for (int col = 0; col < 128; col++) {
int b = data[col >> 3] & (1 << (col % 8));
digitalWriteFast(kDinPin, LV(b));
digitalWriteFast(kWritePin, LOW);
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
for (int i = 0; i < 10; i++) asm volatile(""); // extra delay
digitalWriteFast(kWritePin, HIGH);
delayMicroseconds(1); // tCAS ish
digitalWriteFast(kCasPin, HIGH);
}
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
void readpage(int address, uint8_t data[16]) {
int row = address >> 7;
noInterrupts();
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
for (int col = 0; col < 128; col++) {
uint8_t& out = data[col >> 3];
writeAddress(col);
digitalWriteFast(kCasPin, LOW);
delayMicroseconds(1); // tCAS ish
int b = digitalReadFast(kDoutPin);
out >>= 1;
if (b == HIGH) out |= 0x80;
digitalWriteFast(kCasPin, HIGH);
}
digitalWriteFast(kRasPin, HIGH);
interrupts();
}
int writeread(int address, int value) {
write(address, value);
return read(address);
}
void refreshrow(int row) {
writeAddress(row);
digitalWriteFast(kRasPin, LOW);
delayMicroseconds(1);
digitalWriteFast(kRasPin, HIGH);
}
void refreshall() {
for (int row = 0; row < 128; row++) {
refreshrow(row);
}
}
void Timer1Isr() {
refreshall();
}
int check01(int address) {
if (writeread(address, 0) != 0) return -1;
if (writeread(address, 1) != 1) return -2;
return 0;
}
int checkrow(int row) {
int row_address = row << 7;
for (int i = 0; i < 128; i++) {
int ret = check01(row_address + i);
if (ret != 0) {
Serial.printf("failure at 0x%04x: %d\n", row_address + i, ret);
return ret;
}
}
return 0;
}
int address = 0x007f;
int led_count = 0;
int led = 0;
char cmd = '\0';
const int kLedInterval = 1000000;
const uint8_t kSampleData[16] = {
'b', 'l', 'a', 'r', 'g', ',', ' ', 'c',
'e', 'c', 'i', ' ', 'e', 's', 't', '!',
};
void dump16(int address) {
address &= 0x3f80;
uint8_t data[16];
readpage(address, data);
Serial.printf("%04x:", address);
for (int i = 0; i < 16; i++) {
Serial.printf(" %02x", data[i]);
}
Serial.print(" ");
for (int i = 0; i < 16; i++) {
if (data[i] < 33 || data[i] > 126) {
Serial.print(".");
} else {
Serial.printf("%c", data[i]);
}
}
Serial.println("");
}
void filltest() {
uint8_t data[16];
for (int row = 0; row < 128; row++) {
snprintf(reinterpret_cast<char*>(data), 16, "testing row %03d", row);
writepage(row << 7, data);
}
for (int row = 0; row < 128; row++) {
readpage(row << 7, data);
if (atoi(reinterpret_cast<char*>(&data[12])) != row) {
Serial.printf("error in row %d\n", row);
return;
}
}
Serial.println("fill test ok.");
}
void runcmd(char cmd) {
uint8_t dat[16];
if (cmd == 'p') {
writepage(address, kSampleData);
dump16(address);
} else if (cmd == '\0') {
address += 128;
dump16(address);
} else if (cmd == '0') {
address = 0;
dump16(address);
} else if (cmd == 'f') {
filltest();
} else if (cmd == 't') {
for (int row = 0; row < 128; row++) {
Serial.printf("row %d... ", row);
int ret = checkrow(row);
if (ret != 0) {
break;
}
Serial.println("ok!");
}
}
}
void loop() {
// put your main code here, to run repeatedly:
if (led_count > kLedInterval) {
digitalWrite(LED_BUILTIN, LV(led % 2));
led += 1;
led_count = 0;
}
led_count += 1;
if (Serial.available()) {
char c = Serial.read();
if (c == '\n') {
runcmd(cmd);
cmd = '\0';
} else {
cmd = c;
}
}
}